
Fall 2022 - CSCE 438/838: IoT - Lab 4 - Connecting
Things to the Internet

Introduction
Last week we implemented M2M type network with our IoT nodes. In this lab, we will evolve our systems to make it an IoT

system. The first three labs have already help you to understand the basics of embedded system to help you develop the

Things, but IoT is not just about embedded systems. It’s all about connectivity. The goal of this lab is to walk through that

whole process and get a “Hello World!” message from a remote device, into a gateway, and onto the internet. First we will

create the gateway, then we will fire up a device to send the data, and finally we will create an internet application to look for

the data.

Takeaways from last week
Modular design of the system for easy upgrade of system components

Wireless connectivity with radio

IoT vs M2M
IoT systems may incorporate some M2M nodes (such as a Bluetooth mesh using non-IP communication), but aggregates data

at an edge router or gateway. An edge appliance like a gateway or router serves as the entry point onto the internet.

Alternatively, some sensors with more substantial computing power can push the internet networking layers onto the sensor

itself. Regardless of where the internet on-ramp exists, the fact that it has a method of tying into the internet fabric is what

defines IoT.

By moving data onto the internet for sensors, edge processors, and smart devices, the legacy world of cloud services can be

applied to the simplest of devices. Before cloud technology and mobile communication became mainstream and cost-

effective, simple sensors and embedded computing devices in the field had no good means of communicating data globally in

seconds, storing information for perpetuity, and analyzing data to find trends and patterns. As cloud technologies advanced,

wireless communication systems became pervasive, new energy devices like lithium-ion became cost-effective, and machine

learning models evolved to produce actionable value. This greatly improved the IoT value proposition. Without these

technologies coming together when they did, we would still be in an M2M world.

LoRaWAN Overview
LoRaWAN is a media access control (MAC) protocol for wide area networks. It is designed to allow low-powered devices to

communicate with Internet-connected applications over long range wireless connections. LoRaWAN can be mapped to the

second and third layer of the OSI model. It is implemented on top of LoRa or FSK modulation in industrial, scientific and

medical (ISM) radio bands. The LoRaWAN protocols are defined by the LoRa Alliance and formalized in the LoRaWAN

Specification which can be downloaded on the LoRa Alliance website.

IoT is the idea that we can add inter-connectivity to a large portion of the things we interact with on a day-to-day basis. For

example, if your refrigerator kept track of what was inside and could talk to your cell phone, then when you were at the store

you wouldn’t be left wondering if you need to buy milk or not. So the Internet of Things is about connectivity.

Connectivity is well-solved in the home with WiFi and Bluetooth, but what if your refrigerator was in the middle of a field

without access to the internet? This is where LoRa comes in. LoRa is “Long Range” radio which was designed for low power

consumption and long range transmissions at the expense of bandwidth. This means you can send a little bit of data a long

way.

Then you need something that is dedicated to bridge from LoRa messages to internet traffic - called a "gateway." As long as

you have something that can speak both LoRa and “Internet” then you could make your own solution, but there is a easier and

better option. This is where LoRaWAN comes in.

LoRaWAN is a public specification for the system that would be at Starbucks listening for messages from the fridge. One

important benefits of LoRaWAN is that you can send encrypted data during transmission and that your fridge could get up and

walk to the next state over (again - just a metaphor!) and the messages could still be picked up by a gateway that someone else

had built. Since the messages are secure that person won’t know about your stinky cheese but the message will still get back to

you over the internet. Groups like The Things Network, Azure IoT Hub, AWS IoT organize everyone’s efforts to make this

possible.

https://www.lora-alliance.org/
https://www.lora-alliance.org/lorawan-for-developers
https://thethingsnetwork.org/
https://azure.microsoft.com/cloud_platform/iot_solutions/
https://aws.amazon.com/iot/

Terminology
End Device, Node, Mote - an object with an embedded low-power communication device.

Gateway - antennas that receive broadcasts from End Devices and send data back to End Devices.

Network Server - servers that route messages from End Devices to the right Application, and back.

Application - a piece of software, running on a server.

Uplink Message - a message from a Device to an Application.

Downlink Message - a message from an Application to a Device.

Things in your hand
Your Device - Sparkfun Pro RF

A “device” is the remote system that is sending (and in some cases receiving) data. We will set up a device to actually send the

“Hello World!” message in the section “Turning a Gateway into A Device.”

Your Gateway - Sparkfun ESP32 Things 1-channel Gateway

The name of the ESP LoRa Gateway 1-Channel is a dead giveaway. With all its glorious wireless connectivity it acts as the

https://www.thethingsnetwork.org/docs/devices/
https://www.thethingsnetwork.org/docs/gateways/
https://www.thethingsnetwork.org/docs/network/

bridge that speaks both WiFi and LoRa. The section “Single-Channel LoRaWAN Gateway” will cover all the steps you need

to make this part.

With these, we can start off the lab and build an IoT!

Hardware

SparkFun LoRa Gateway - 1-Channel (ESP32)

ESP32-WROOM-32 module

WiFi, BT+BLE microcontroller

Integrated PCB antenna

Hope RFM95W LoRa modem

Frequency range: 868/915 MHz

Spread factor: 6-12

SPI control interface

U.FL antenna connector for LoRa radio

Reset and ESP32 pin0 buttons

14 GPIO ESP32 pin-breakouts

Power and user LEDs

1. Setting Up 1-channel Gateway

Installing ESP32 Arduino Core
The ESP32’s relationship with Arduino is growing and now it is very easy to install the core - the Arduino IDE can handle it

nearly on its own. All you need to do is make sure you have Arduino IDE version 1.8 or later, then paste

https://dl.espressif.com/dl/package_esp32_index.json

into the Additional Board Manager URLs field of the preferences window, if you have existing URLs, separate them with a

comma.

Now accept the changes and restart the Arduino IDE. Next open the Board Manager from the top of Tools > Board and

search for ESP32. Click “Install” on the search result, after a little while the text besides the name should change to

“Installed.” Re-start the IDE for good measure.

Upload Blink
To make sure everything is ready, let’s blink the LED. Make sure the correct board is selected (SparkFun ESP32 Things if you

installed the variant like we did above) and select the proper programming port. Then open the “Blink” example and change

the led pin definition to “LED_BUILTIN” (or pin 17 if you don’t have the variant installed). If you hit upload the code should

compile and be transferred to the board, and the pin 17 led should begin to blink.

Now that you are in control of the ESP32 we can move on to exciting things! The remaining portions of this guide will focus

on sending a “Hello world!” message from a LoRa device to the internet.

Setting up the Single-Channel LoRaWAN Gateway
Do not press the reset button on your gateway board!

Making a LoRa Gateway

Thanks to 915 MHz LoRa AND WiFi connectivity, the LoRa Gateway 1-Channel really shines as an inexpensive gateway in a

LoRaWAN network. This section will show you how to make your own gateway and access it on the internet.

If you’ve followed along with this hookup guide then you should already be able to program the LoRa Gateway 1-Channel.

The next step is to download a library to run LoRaWAN and modify it to suit our board and needs.

Download the Library

The ESP 1-ch Gateway code is hosted on GitHub by things4u. Although v6 is the current version, the hookup guide by

sparkfun still uses v5. Therefore for this lab we are going to use the archived v5 copy hosted:

ARCHIVED ESP-1CH-GATEWAY-V5.0 (ZIP)

This repository includes both the Arduino sketch and the libraries it depends on. Before compiling the sketch you’ll need to

extract all libraries from the repository’s “library” folder into your Arduino sketchbook’s “libraries” folder.

To open the example code, open the ESP-sc-gway.ino file. When the IDE loads, it should include another dozen-or-so tabs –

it’s a hefty, but well-segmented sketch!

Configure the Gateway Sketch

Before uploading the ESP-1ch-Gateway sketch to your board, you’ll need to make a handful of modifications to a couple of

files. (Use Ctrl-F to search the file for the setting you want to modify) Here’s a quick overview:

ESP-sc-gway.h

This file is the main source of configuration for the gateway sketch. The definitions you’ll probably have to modify are:

https://www.sparkfun.com/products/15006
https://github.com/things4u/ESP-1ch-Gateway-v5.0
https://cdn.sparkfun.com/assets/learn_tutorials/8/2/6/ESP-1ch-Gateway-v5.0-master.zip

Radio

_LFREQ – This sets the frequency range your radio will communicate on. Set this to either 433

(Asia), 868 (EU), or 915 (US)

_SPREADING – This sets the LoRa spread factor. SF7 , SF8 , SF9 , SF10 , SF11 , or SF12

can be used. Note that this will affect which devices your gateway can communicate with.

_CAD – Channel Activity Detection. If enabled (set to 1) CAD will allow the gateway to monitor

messages sent at any spread factor. The tradeoff if enabled: very weak signals may not be picked up by the

radio.

Hardware

OLED – This board does not include an OLED, set this to 0.

_PIN_OUT – This configures the SPI and other hardware settings. Set this to 6, we’ll add a

custom hardware definition later.

CFG_sx1276_radio – Ensure this is defined and CFG_sx1272_radio is not. This configures the

LoRa radio connected to the ESP32.

The Things Network (TTN)

_TTNSERVER – Comment out or delete this.

_TTNPORT – Comment out or delete this.

_DESCRIPTION – Customize the name of your gateway

_EMAIL – Your email address, or that of the owner of the gateway

_LAT and _ **LON** – GPS coordinates of your gateway

WiFi

Add at least one WiFi network to the wpas wpa[] array, but leave the first entry blank. For example:

wpas wpa[] = {

{ “” , “” }, // Reserved for WiFi Manager

{ “NU-IoT”, “<password you get after registering>” }

};

There are a lot of other values which can all optionally be configured. For a complete rundown, check out the Editing the

ESP-sc-gway.h part of the README.

loramodem.h

This file defines how the LoRa modem is configured, including which frequency channels it can use and which pins the

ESP32 uses to communicate with it. Be careful modifying most of the definitions in here, but one section you will have to

modify is the _PIN_OUT declarations.

https://github.com/things4u/ESP-1ch-Gateway-v5.0#editing-the-esp-sc-gwayh-file

First, find the line that says #error "Pin Definitions _PIN_OUT must be 1(HALLARD) or 2

(COMRESULT)" and delete it. Then copy and paste these lines in its place (between the #else and #endif):

struct pins {

 uint8_t dio0 = 26;

 uint8_t dio1 = 33;

 uint8_t dio2 = 32;

 uint8_t ss = 16;

 uint8_t rst = 27; // Reset not used

} pins;

#define SCK 14

#define MISO 12

#define MOSI 13

#define SS 16

#define DIO0 26

The int freqs[] array can be adjusted, if you want to use different subbands, but, beyond that, there’s not much else in

here we recommend modifying.

Gateway to the Cloud Code

Now we are going to update codes for gateway to cloud communication. By default things4u implementation works for the

things network. However, the things network has stopped supports for all single channel gateway devices. Therefore we will

use Microsoft Azure IoT hub for the cloud service instead of the things network. For that we need to make a few changes in

the source code.

ESP-sc-gway.ino

At the begeining of ESP-sc-gway.ino include the following header files:

#include "Esp32MQTTClient.h"

#include <HTTPClient.h>

#include <Arduino.h>

Arduino IDE needs AzureIoT and HTTPClinet libraries to include them correctly. Then declare a global variable as:

static const char* connectionString = "HostName=PrashantSubediIoTHub.azure-device

s.net;DeviceId=iot-hub-1;SharedAccessKey=removed";

We will update this variable after enabling our Azure IoT hub device in Azure portal.

Delete or comment out the following function:

void pullData()

We no longer need this. Now include the following code block at the end of the setup() function:

 if (!Esp32MQTTClient_Init((const uint8_t*)connectionString)){

 Serial.println("Initializing IoT hub failed.");

 return;}

 else{

 Serial.println("Initializing IoT hub success.");}

Inside the loop() delete everything after the function call. That means now it will look like:

void loop (){

 uint32_t uSeconds; // micro seconds

 int packetSize;

 uint32_t nowSeconds = now();

 // check for event value, which means that an interrupt has arrived.

 // In this case we handle the interrupt (e.g. message received)

 // in userspace in loop().

 //

 stateMachine(); // do the state machine

}//loop

_txRx.ino

Include the headers at the begeining:

#include "Esp32MQTTClient.h"

#include <HTTPClient.h>

#include <Arduino.h>

Now inside the function int buildPacket(uint32_t tmst, uint8_t *buff_up, struct LoraUp LoraUp, bool internal) rewrite the

conditional prepossor for STAT_LOG == 1 as:

#if STAT_LOG == 1

 // Do statistics logging. In first version we might only

 // write part of the record to files, later more

 addLog((unsigned char *)(buff_up), buff_index);

 Serial.println((char *)message);

 for(int idx=0;idx<messageLength;idx++)

 {

 Serial.print(message[idx],HEX);

 Serial.print(" ");

 }

 Serial.println("");

 Serial.println("start sending events.");

 char buff[256];

 //Send the in JSON format

 String res = "{\"Message\": \"";

 res.concat((char *)message);

 res.concat("\"}");

 // Replace the following line with your data sent to Azure IoTHub

 snprintf(buff, 256, res.c_str());

 Serial.println(res);

 if (Esp32MQTTClient_SendEvent(buff))

 {

 Serial.println("Sending data succeed");

 }

 else

 {

 Serial.println("Failure...");

 }

#endif

Upload the Code

After configuring the gateway project, upload it to the board. Try compiling and uploading the sketch to your ESP32 with

program upload BAUD 115200. Also after it’s uploaded, open up your serial monitor and set the baud rate to 115200.

The sketch may take a long time to set up the first time through – it will format your SPIFFS file system and create a non-

volatile configuration file. Once that’s complete, you should see the ESP32 attempt to connect to your WiFi network, then

initialize the radio.

2. Connecting Gateway to NU-IoT
Without the Wi-Fi network, our device won’t have a link to connect to the Internet. UNL Wi-Fi is now open for IoT device

enrollment and gives up a big advantage.

Acquire the MAC address
After uploading your gateway program, you would see the below message when the system is starting up. Find a line that

includes the MAC address of your device, and save it

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux

Connect it to NU-IoT
Connect your computer wifi to NU-IoT instead of eduroam to register your LoRa gateway. Each group will have one gateway

so it should only be done once. You have to register your device from campus network. After visiting to

https://its.nebraska.edu/network/iot you will see this page. Select “IoT Registration Portal” and continue.

https://its.nebraska.edu/network/iot

After logging in with your UNL account, you will the following page. Put the MAC address on the bar and enroll this

gateway.

Test it!
Modify the password field in the ESP-sc-gway.h.You can test it by looking at the messages print out by the serial monitor. If it

says connection is successful then we can continue to the next step.

3. Setting up The Azure IoT Hub

Enable Student Credit

Go to Azure for students and click start free. Login with your UNL email and password. Then activate your student benifit

credit in that account.

IoT Hub
Click to create a resource in azure portal. In the search box search ‘IoT Hub’ and select it. Then click ‘create’.

Select ‘Azure for Students’ as the subscription. Add it in a resource group. If you do not have a resource group create a new.

Put a name for your IoT hub and select region as ‘Central US’.

https://azure.microsoft.com/en-us/free/students/

Now click on the ‘Management’ tab. Select ‘F1: Free tier’ as your pricing and scale tier. Keep others as the default settings.

Now Click ‘Review+create’ button from the bottom. After a while you are getting your new azure IoT hub.

For this free tier hub, you can exchange a total of 8000 messages per day. Therefore, program your device accordingly so that

it does not flood your cloud with messages and finish the quota.

IoT Device for the Hub
Once you have the hub, now add an IoT device in it. Click to the newly created hub. Then click on ‘Devices’ from the left side

column.

Now click on Add Device button. Put a ‘Device ID’ on it. Select ‘Authentication type’ as symettric key and check ‘Auto-

generate keys’ key option. Make ‘Connect this device to an IoT hub’ enable. Click ‘Save’ on the bottom. It will create an IoT

device for your IoT hub.

Now click on that device. It will show all information of that device. Copy the ‘Primary Connection String’ of it. This

connection string needs to be added into static const char* connectionString variable inside ESP32 gateway’s code.

We’ll need these keys to program your ESP32 so leave this page up on your browser. After finishing the gateway code, let’s

open up the Arduino IDE again. It’s time to program the node!

4. Setting up your device/application

LMIC
Why not Radiohead?

Radiohead is an amateur library for accessing the radio chip hardware. It is not designed for standardized

work.

What is LMIC (LoraMAC-in-C)

LoRa MAC implementation in C

An real-time OS supports it

LoRa communications are supported

Highly professional and integrated library

Installing LMIC library
We’ll be setting up the SAMD21 Pro RF as a node using a library written by Matthijs Kooijman which is a modified version

of “IBM’s LMIC (LoraMAC-in-C)” library. The latest repo is maintained by a company named MCCI. You can download and

manually install it from the GitHub Repository.

Configurations
The LoRa settings should match

The spreading factor, frequency, bandwidth should match your gateway configuration.

Configure LMIC

1. This modified example takes directly from the example code provided by the library with a two changes: the

function calls to " Serial " will need to be replaced with " SerialUSB " and changes to the pin mapping that is

consistent with the SAMD21 Pro RF. Before we look at the code you’ll first need to modify the

lmic_project_config.h file that came with the LMIC Arduino Library.

2. Find your Arduino libraries folder and navigate to …libraries/arduino-LMIC/project_config/. You should find a

file called lmic_project_config.h. Open it in any text editor and find the lines where CFG_us915 is defined. It

should look like this:

//#define CFG_eu868 1

#define CFG_us915 1

https://github.com/mcci-catena/arduino-lmic

// This is the SX1272/SX1273 radio, which is also used on the HopeRF

// RFM92 boards.

//#define CFG_sx1272_radio 1

// This is the SX1276/SX1277/SX1278/SX1279 radio, which is also used on

// the HopeRF RFM95 boards.

#define CFG_sx1276_radio 1

Configuring Serial for SAMD21

Remember to change your serial library lines of your SAMD21 Pro RF to SerialUSB

Example Code for Sparkfun pro RF LoRaWAN
implementation
/***

 * Copyright (c) 2015 Matthijs Kooijman

 * Copyright (c) 2018 Terry Moore, MCCI Corporation

 *

 * Permission is hereby granted, free of charge, to anyone

 * obtaining a copy of this document and accompanying files,

 * to do whatever they want with them without any restriction,

 * including, but not limited to, copying, modification and redistribution.

 * NO WARRANTY OF ANY KIND IS PROVIDED.

 *

 * This example transmits data on hardcoded channel and receives data

 * when not transmitting. Running this sketch on two nodes should allow

 * them to communicate.

 ***/

#include <lmic.h>

#include <hal/hal.h>

#include <SPI.h>

// we formerly would check this configuration; but now there is a flag,

// in the LMIC, LMIC.noRXIQinversion;

// if we set that during init, we get the same effect. If

// DISABLE_INVERT_IQ_ON_RX is defined, it means that LMIC.noRXIQinversion is

// treated as always set.

//

// #if !defined(DISABLE_INVERT_IQ_ON_RX)

// #error This example requires DISABLE_INVERT_IQ_ON_RX to be set. Update \

// lmic_project_config.h in arduino-lmic/project_config to set it.

// #endif

// How often to send a packet. Note that this sketch bypasses the normal

// LMIC duty cycle limiting, so when you change anything in this sketch

// (payload length, frequency, spreading factor), be sure to check if

// this interval should not also be increased.

// See this spreadsheet for an easy airtime and duty cycle calculator:

// https://docs.google.com/spreadsheets/d/1voGAtQAjC1qBmaVuP1ApNKs1ekgUjavHuVQIXy

YSvNc

#define TX_INTERVAL 60000 //Delay between each message in millidecond.

 // Pin mapping for SAMD21

 const lmic_pinmap lmic_pins = {

 .nss = 12,//RFM Chip Select

 .rxtx = LMIC_UNUSED_PIN,

 .rst = 7,//RFM Reset

 .dio = {6, 10, 11}, //RFM Interrupt, RFM LoRa pin, RFM LoRa pin

 };

// These callbacks are only used in over-the-air activation, so they are

// left empty here (we cannot leave them out completely unless

// DISABLE_JOIN is set in arduino-lmoc/project_config/lmic_project_config.h,

// otherwise the linker will complain).

void os_getArtEui (u1_t* buf) { }

void os_getDevEui (u1_t* buf) { }

void os_getDevKey (u1_t* buf) { }

void onEvent (ev_t ev) {

}

osjob_t txjob;

osjob_t timeoutjob;

static void tx_func (osjob_t* job);

// Transmit the given string and call the given function afterwards

void tx(const char *str, osjobcb_t func) {

 os_radio(RADIO_RST); // Stop RX first

 delay(1); // Wait a bit, without this os_radio below asserts, apparently becaus

e the state hasn't changed yet

 LMIC.dataLen = 0;

 while (*str)

 LMIC.frame[LMIC.dataLen++] = *str++;

 LMIC.osjob.func = func;

 os_radio(RADIO_TX);

 SerialUSB.println("TX");

}

// Enable rx mode and call func when a packet is received

void rx(osjobcb_t func) {

 LMIC.osjob.func = func;

 LMIC.rxtime = os_getTime(); // RX _now_

 // Enable "continuous" RX (e.g. without a timeout, still stops after

 // receiving a packet)

 os_radio(RADIO_RXON);

 SerialUSB.println("RX");

}

static void rxtimeout_func(osjob_t *job) {

 digitalWrite(LED_BUILTIN, LOW); // off

}

static void rx_func (osjob_t* job) {

 // Blink once to confirm reception and then keep the led on

 digitalWrite(LED_BUILTIN, LOW); // off

 delay(10);

 digitalWrite(LED_BUILTIN, HIGH); // on

 // Timeout RX (i.e. update led status) after 3 periods without RX

 os_setTimedCallback(&timeoutjob, os_getTime() + ms2osticks(3*TX_INTERVAL), rxti

meout_func);

 // Reschedule TX so that it should not collide with the other side's

 // next TX

 os_setTimedCallback(&txjob, os_getTime() + ms2osticks(TX_INTERVAL/2), tx_func);

 SerialUSB.print("Got ");

 SerialUSB.print(LMIC.dataLen);

 SerialUSB.println(" bytes");

 SerialUSB.write(LMIC.frame, LMIC.dataLen);

 SerialUSB.println();

 // Restart RX

 rx(rx_func);

}

static void txdone_func (osjob_t* job) {

 //rx(rx_func);

}

// log text to USART and toggle LED

static void tx_func (osjob_t* job) {

 // say hello

 tx("Hello, world!", txdone_func);

 // reschedule job every TX_INTERVAL (plus a bit of random to prevent

 // systematic collisions), unless packets are received, then rx_func

 // will reschedule at half this time.

 os_setTimedCallback(job, os_getTime() + ms2osticks(TX_INTERVAL + random(500)),

tx_func);

}

// application entry point

void setup() {

 SerialUSB.begin(115200);

 while(!SerialUSB);

 SerialUSB.println("Starting");

// #ifdef VCC_ENABLE

// // For Pinoccio Scout boards

// pinMode(VCC_ENABLE, OUTPUT);

// digitalWrite(VCC_ENABLE, HIGH);

// delay(1000);

// #endif

 pinMode(LED_BUILTIN, OUTPUT);

 // initialize runtime env

 os_init();

 // this is automatically set to the proper bandwidth in kHz,

 // based on the selected channel.

 uint32_t uBandwidth;

 LMIC.freq = 903900000;

 uBandwidth = 125;

 LMIC.datarate = US915_DR_SF7; // DR4

 LMIC.txpow = 21;

 // disable RX IQ inversion

 LMIC.noRXIQinversion = true;

 // This sets CR 4/5, BW125 (except for EU/AS923 DR_SF7B, which uses BW250)

 LMIC.rps = updr2rps(LMIC.datarate);

 SerialUSB.print("Frequency: "); SerialUSB.print(LMIC.freq / 1000000);

 SerialUSB.print("."); SerialUSB.print((LMIC.freq / 100000) % 10);

 SerialUSB.print("MHz");

 SerialUSB.print(" LMIC.datarate: "); SerialUSB.print(LMIC.datarate);

 SerialUSB.print(" LMIC.txpow: "); SerialUSB.println(LMIC.txpow);

 // This sets CR 4/5, BW125 (except for DR_SF7B, which uses BW250)

 LMIC.rps = updr2rps(LMIC.datarate);

 // disable RX IQ inversion

 LMIC.noRXIQinversion = true;

 SerialUSB.println("Started");

 SerialUSB.flush();

 // setup initial job

 os_setCallback(&txjob, tx_func);

}

void loop() {

 // execute scheduled jobs and events

 os_runloop_once();

}

5. Receiving Data on Azure from your device

Stream Your Data

Now we have both devices ready and cable to transmit and receive LoRa packets. In addition, in Azure we have an IoT device

inside the azure IoT hub. To access data from this device we need a “Stream Analytics job” or any othe equivalent data access

resource. In this lab we will utilize Stream Analytics job.

Similar to all other resources creation we now need to click the create button and search for Stream Analytics job. After

clicking on create button we have fill the required information and then click on the ‘Review+create’ button at the bottom.

Then click ‘Create’ button

Once the job is created click on ‘Go to resource’ button.

Here we can see that we need to select inputs and outputs for this job. First click on ‘Inputs’. Then click on ‘Add stream input’

and select ‘IoT Hub’. Give an alias name and select your IoT Hub from the drop-down menu. Click ‘Save’. Now our IoT hub

is connected as an input stream.

For this lab, we won’t need any ouput source, rather we will query the input stream directly to see the data beign sent to

IoTHub. For this, go to Query tab in the stream analytics job and add the following query

SELECT

 *

FROM

 [csce-838-stream]

Replace csce-838-stream with your input alias. You should see the messages sent to IoT hub in the result section as show in

the screenshot below.

Expected Results
Serial monitor from the Sparkfun pro RF. From there you should see the messages showing transmission or run-time errors

defined in the program.

If the gateway successfully received the packet, its serial monitor will show the messages:

The data panel from Azure stream analytics query tab will look like this if all the links are successfully established. This

means you now have your end to end IoT application.

Lab Assignment
In this lab, you will work with your teammates and get familiar with our IoT system.

A lab report is required from everyone in the group. You will need to work together as you need to share the gateway. In the

group report, each member needs to provide individual screenshots of Azure account and serial monitor outputs.

In the class: Close the LoRaWAN Jumpers

One last thing. On the underside of the SAMD21 Pro RF there are two jumpers labeled LoRaWAN. Closing these jumpers

will tell the module that we’re broadcasting in the modulation scheme unique to LoRaWAN.

Assignment
Requirements

1. Finish the helloworld example

1. Record the procedure of setting up the link from your device to IoT Hub with screenshots

2. Keep the code from the previous lab (lab 3), and merge it with the LMIC example code for packet transmissions

1. Temporally remove the radio operations in the code and use the LMIC code

2. Use your packet construction modules and average temperature reading module, etc.

3. Maintain your packet structure from lab 3 and make necessary changes in the gateway to prepare a json data packet.

Then send packets with temperature sensor data to the Azure cloud every 60 seconds. Instead of using timers, use

LMIC’s TX_INTERVAL.

4. Download the json file from Azure and share the contents of it in the report.

Results

5. Code that fulfills each requirement in this lab

1. Each function in this system should be separately presented with explanation, entire code snippet will not

be accept

6. Serial message from

1. Sparkfun pro RF device

2. LoRa gateway

7. Screenshots from Azure and json for the data reporting results.

Report format
Report:

Development Process

- Record your development process

- Acknowledge any resources that you found and helped you with your development (open-source

projects/forum threads/books)

- Record the software/hardware bugs/pitfalls you had and your troubleshooting procedure.

Results

Required results from the section above

The entire program (Arduino sketch) in the appendix (No screenshots will be accepted)

Submission Instructions:

1. Submit your lab on Canvas on or before the deadline (Sep 23rd, 8:29 am)

2. Your submission should include one single pdf explaining everything that was asked in the tasks and screenshots if

any

3. Your submission should also include all the code that you have worked on with proper documentation

4. Failing to follow the instructions will make you lose points

Reference
1. https://learn.sparkfun.com/tutorials/sparkfun-lora-gateway-1-channel-hookup-guide/all

2. https://learn.sparkfun.com/tutorials/lorawan-with-prorf-and-the-things-network/all#example-ifttt-integration

https://learn.sparkfun.com/tutorials/sparkfun-lora-gateway-1-channel-hookup-guide/all
https://learn.sparkfun.com/tutorials/lorawan-with-prorf-and-the-things-network/all#example-ifttt-integration

3. https://www.youtube.com/playlist?list=PLlrxD0HtieHh5_pOv-6xsMxS3URD6XD52

4. https://learn.sparkfun.com/tutorials/sparkfun-samd21-pro-rf-hookup-guide/lorawan-arduino-library-and-example

5. Lea, Perry. Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication

infrastructure, edge computing, analytics, and security. Packt Publishing Ltd, 2018.

https://www.youtube.com/playlist?list=PLlrxD0HtieHh5_pOv-6xsMxS3URD6XD52
https://learn.sparkfun.com/tutorials/sparkfun-samd21-pro-rf-hookup-guide/lorawan-arduino-library-and-example

