Fall 2022 - CSCE 438/838: IoT - Lab 4 - Connecting
Things to the Internet

Introduction

Last week we implemented M2M type network with our IoT nodes. In this lab, we will evolve our systems to make it an IoT
system. The first three labs have already help you to understand the basics of embedded system to help you develop the
Things, but IoT is not just about embedded systems. It’s all about connectivity. The goal of this lab is to walk through that
whole process and get a “Hello World!” message from a remote device, into a gateway, and onto the internet. First we will
create the gateway, then we will fire up a device to send the data, and finally we will create an internet application to look for

the data.

Takeaways from last week

e Modular design of the system for easy upgrade of system components

e Wireless connectivity with radio

loT vs M2M

IoT systems may incorporate some M2M nodes (such as a Bluetooth mesh using non-IP communication), but aggregates data
at an edge router or gateway. An edge appliance like a gateway or router serves as the entry point onto the internet.
Alternatively, some sensors with more substantial computing power can push the internet networking layers onto the sensor
itself. Regardless of where the internet on-ramp exists, the fact that it has a method of tying into the internet fabric is what

defines IoT.

By moving data onto the internet for sensors, edge processors, and smart devices, the legacy world of cloud services can be
applied to the simplest of devices. Before cloud technology and mobile communication became mainstream and cost-
effective, simple sensors and embedded computing devices in the field had no good means of communicating data globally in
seconds, storing information for perpetuity, and analyzing data to find trends and patterns. As cloud technologies advanced,
wireless communication systems became pervasive, new energy devices like lithium-ion became cost-effective, and machine
learning models evolved to produce actionable value. This greatly improved the IoT value proposition. Without these

technologies coming together when they did, we would still be in an M2M world.

LoRaWAN Overview

LoRaWAN is a media access control (MAC) protocol for wide area networks. It is designed to allow low-powered devices to
communicate with Internet-connected applications over long range wireless connections. LoRaWAN can be mapped to the
second and third layer of the OSI model. It is implemented on top of LoRa or FSK modulation in industrial, scientific and
medical (ISM) radio bands. The LoRaWAN protocols are defined by the [.oRa Alliance and formalized in the LoRaWAN

Specification which can be downloaded on the LoRa Alliance website.

IoT is the idea that we can add inter-connectivity to a large portion of the things we interact with on a day-to-day basis. For
example, if your refrigerator kept track of what was inside and could talk to your cell phone, then when you were at the store

you wouldn’t be left wondering if you need to buy milk or not. So the Internet of Things is about connectivity.

Connectivity is well-solved in the home with WiFi and Bluetooth, but what if your refrigerator was in the middle of a field
without access to the internet? This is where LoRa comes in. LoRa is “Long Range” radio which was designed for low power
consumption and long range transmissions at the expense of bandwidth. This means you can send a little bit of data a long
way.

Then you need something that is dedicated to bridge from LoRa messages to internet traffic - called a "gateway." As long as
you have something that can speak both LoRa and “Internet” then you could make your own solution, but there is a easier and

better option. This is where LoRaWAN comes in.

LoRaWAN is a public specification for the system that would be at Starbucks listening for messages from the fridge. One
important benefits of LoRaWAN is that you can send encrypted data during transmission and that your fridge could get up and
walk to the next state over (again - just a metaphor!) and the messages could still be picked up by a gateway that someone else
had built. Since the messages are secure that person won’t know about your stinky cheese but the message will still get back to
you over the internet. Groups like The Things Network, Azure IoT Hub, AWS IoT organize everyone’s efforts to make this

possible.

https://www.lora-alliance.org/
https://www.lora-alliance.org/lorawan-for-developers
https://thethingsnetwork.org/
https://azure.microsoft.com/cloud_platform/iot_solutions/
https://aws.amazon.com/iot/

End Nodes ‘ Concentrator / Gateway ’ ‘ Network Server } ‘ Application Server ’
§
@ - 3
Pet tracking ‘

Vending machine @ LTE/LTE-M/ethernet
=

Smoke alarm
@

Trash container @ ’::vl o ‘ m

Water meter
LoRa RF TCP/IP TLS1.2 TCP/IP TLS1.2
LoRaWAN LoRaWAN Secure Payload

AES Secured Payload

Terminology

e End Device, Node, Mote - an object with an embedded low-power communication device.

e Gateway - antennas that receive broadcasts from End Devices and send data back to End Devices.
e Network Server - servers that route messages from End Devices to the right Application, and back.
o Application - a piece of software, running on a server.

o Uplink Message - a message from a Device to an Application.

e Downlink Message - a message from an Application to a Device.

Things in your hand

Your Device - Sparkfun Pro RF

A “device” is the remote system that is sending (and in some cases receiving) data. We will set up a device to actually send the
“Hello World!” message in the section “Turning a Gateway into A Device.”

Your Gateway - Sparkfun ESP32 Things 1-channel Gateway

The name of the ESP LoRa Gateway 1-Channel is a dead giveaway. With all its glorious wireless connectivity it acts as the

https://www.thethingsnetwork.org/docs/devices/
https://www.thethingsnetwork.org/docs/gateways/
https://www.thethingsnetwork.org/docs/network/

bridge that speaks both WiFi and LoRa. The section “Single-Channel LoRaWAN Gateway” will cover all the steps you need

to make this part.

With these, we can start off the lab and build an IoT!

Hardware

SparkFun LoRa Gateway - 1-Channel (ESP32)

¢ ESP32-WROOM-32 module

o WiFi, BT+BLE microcontroller
o Integrated PCB antenna

e Hope RFM95W LoRa modem
o Frequency range: 868/915 MHz
o Spread factor: 6-12
o SPI control interface

e U.FL antenna connector for LoRa radio

e Reset and ESP32 pin0 buttons

e 14 GPIO ESP32 pin-breakouts

e Power and user LEDs

1. Setting Up 1-channel Gateway
Installing ESP32 Arduino Core

The ESP32’s relationship with Arduino is growing and now it is very easy to install the core - the Arduino IDE can handle it

nearly on its own. All you need to do is make sure you have Arduino IDE version 1.8 or later, then paste

https://dl.espressif.com/dl/package esp32 index.json

into the Additional Board Manager URLs field of the preferences window, if you have existing URLs, separate them with a

comima.

e Ll

e b UL 0 P T

e
e

[e i o w0 -3 o]
rum iy

g B B e i i e, om, S nLaacreasd o Hinacdegn sl roes e

bppitesap e
}

Now accept the changes and restart the Arduino IDE. Next open the Board Manager from the top of Tools > Board and
search for ESP32. Click “Install” on the search result, after a little while the text besides the name should change to

“Installed.” Re-start the IDE for good measure.

Upload Blink

To make sure everything is ready, let’s blink the LED. Make sure the correct board is selected (SparkFun ESP32 Things if you
installed the variant like we did above) and select the proper programming port. Then open the “Blink” example and change
the led pin definition to “CLED_BUILTIN” (or pin 17 if you don’t have the variant installed). If you hit upload the code should
compile and be transferred to the board, and the pin 17 led should begin to blink.

Now that you are in control of the ESP32 we can move on to exciting things! The remaining portions of this guide will focus

on sending a “Hello world!” message from a LoRa device to the internet.

Setting up the Single-Channel LoRaWAN Gateway

Do not press the reset button on your gateway board!

Making a LoRa Gateway

Thanks to 915 MHz LoRa AND WiFi connectivity, the .oRa Gateway 1-Channel really shines as an inexpensive gateway in a
LoRaWAN network. This section will show you how to make your own gateway and access it on the internet.

If you’ve followed along with this hookup guide then you should already be able to program the LoRa Gateway 1-Channel.
The next step is to download a library to run LoRaWAN and modify it to suit our board and needs.

Download the Library

The ESP 1-ch Gateway code is hosted on GitHub by things4u. Although v6 is the current version, the hookup guide by
sparkfun still uses v5. Therefore for this lab we are going to use the archived v5 copy hosted:

ARCHIVED ESP-1CH-GATEWAY-V5.0 (ZIP)

This repository includes both the Arduino sketch and the libraries it depends on. Before compiling the sketch you’ll need to
extract all libraries from the repository’s “library” folder into your Arduino sketchbook’s “libraries” folder.

To open the example code, open the ESP-sc-gway.ino file. When the IDE loads, it should include another dozen-or-so tabs —
it’s a hefty, but well-segmented sketch!

Configure the Gateway Sketch

Before uploading the ESP-1ch-Gateway sketch to your board, you’ll need to make a handful of modifications to a couple of
files. (Use Ctrl-F to search the file for the setting you want to modify) Here’s a quick overview:

ESP-sc-gway.h

This file is the main source of configuration for the gateway sketch. The definitions you’ll probably have to modify are:

https://www.sparkfun.com/products/15006
https://github.com/things4u/ESP-1ch-Gateway-v5.0
https://cdn.sparkfun.com/assets/learn_tutorials/8/2/6/ESP-1ch-Gateway-v5.0-master.zip

* Radio

o

** LFREQ** — This sets the frequency range your radio will communicate on. Set this to either 433
(Asia), 868 (EU), or 915 (US)

** SPREADING** — This sets the LoRa spread factor. SF7, SF8, SF9, SF10, SF11,or SF12
can be used. Note that this will affect which devices your gateway can communicate with.

** CAD** — Channel Activity Detection. If enabled (set to 1) CAD will allow the gateway to monitor
messages sent at any spread factor. The tradeoff if enabled: very weak signals may not be picked up by the

radio.

e Hardware

o

o

o

QLED — This board does not include an OLED, set this to 0.
** PIN OUT** —This configures the SPI and other hardware settings. Set this to 6, we’ll add a

custom hardware definition later.

CFG sx1276 radio — Ensure this is defined and CFG_sx1272_radio is not. This configures the

LoRa radio connected to the ESP32.

e The Things Network (TTN)

o

o WiFi

[}

** TTNSERVER** — Comment out or delete this.

** TTNPORT** — Comment out or delete this.

** DESCRIPTION** — Customize the name of your gateway

** EMAIL** — Your email address, or that of the owner of the gateway

** LAT** and _ **LON** — GPS coordinates of your gateway

Add at least one WiFi network to the wpas wpal[] array, but leave the first entry blank. For example:
wpas wpa[] = {

{“”,“”}, // Reserved for WiFi Manager

{ “NU-IoT”, “<password you get after registering>" }

b

There are a lot of other values which can all optionally be configured. For a complete rundown, check out the Editing the

ESP-sc-gway.h part of the README.

loramodem.h

This file defines how the LoRa modem is configured, including which frequency channels it can use and which pins the

ESP32 uses to communicate with it. Be careful modifying most of the definitions in here, but one section you will have to

modify is the PIN OUT declarations.

https://github.com/things4u/ESP-1ch-Gateway-v5.0#editing-the-esp-sc-gwayh-file

First, find the line that says #error "Pin Definitions PIN OUT must be 1(HALLARD) or 2

(COMRESULT) " and delete it. Then copy and paste these lines in its place (between the #else and #endif):

struct pins {

uint8 t dio@ = 26;
uint8 t diol = 33;
uint8 t dio2 = 32;

uint8 t ss = 16;
uint8_t rst = 27; // Reset not used
} pins;
#define SCK 14
#define MISO 12
#define MOSI 13
#define SS 16
#define DIOO 26

The int freqs[] array can be adjusted, if you want to use different subbands, but, beyond that, there’s not much else in

here we recommend modifying.

Gateway to the Cloud Code

Now we are going to update codes for gateway to cloud communication. By default things4u implementation works for the
things network. However, the things network has stopped supports for all single channel gateway devices. Therefore we will
use Microsoft Azure IoT hub for the cloud service instead of the things network. For that we need to make a few changes in

the source code.

ESP-sc-gway.ino

At the begeining of ESP-sc-gway.ino include the following header files:
#include "Esp32MQTTClient.h"

#include <HTTPClient.h>

#include <Arduino.h>

Arduino IDE needs AzureloT and HTTPClinet libraries to include them correctly. Then declare a global variable as:

static const char* connectionString = "HostName=PrashantSubediIoTHub.azure-device

s.net;Deviceld=iot-hub-1;SharedAccessKey=removed";

We will update this variable after enabling our Azure IoT hub device in Azure portal.

Delete or comment out the following function:

void pullData()

We no longer need this. Now include the following code block at the end of the setup() function:

if (!Esp32MQTTClient Init((const uint8 t*)connectionString)){
Serial.println("Initializing IoT hub failed.");
return;}

else{

Serial.println("Initializing IoT hub success.");}

Inside the loop() delete everything after the function call. That means now it will look like:

void loop (){
uint32 t uSeconds; // micro seconds
int packetSize;
uint32 t nowSeconds = now();
// check for event value, which means that an interrupt has arrived.
// In this case we handle the interrupt (e.g. message received)
// in userspace in loop().
//

stateMachine(); // do the state machine

}//loop

_txRx.ino

Include the headers at the begeining:

#include "Esp32MQTTClient.h"
#include <HTTPClient.h>

#include <Arduino.h>

Now inside the function int buildPacket(uint32_t tmst, uint8_t *buff_up, struct LoraUp LoraUp, bool internal) rewrite the

conditional prepossor for STAT_LOG == 1 as:

#if STAT LOG ==
// Do statistics logging. In first version we might only
// write part of the record to files, later more
addLog((unsigned char *)(buff up), buff index);
Serial.println((char *)message);
for(int idx=0;idx<messagelLength;idx++)
{
Serial.print(message[idx],6HEX);
Serial.print(" ");
}
Serial.println("");
Serial.println("start sending events.");
char buff[256];
//Send the in JSON format
String res = "{\"Message\": \"";
res.concat((char *)message);
res.concat("\"}");
// Replace the following line with your data sent to Azure IoTHub
snprintf(buff, 256, res.c str());
Serial.println(res);
if (Esp32MQTTClient SendEvent(buff))
{
Serial.println("Sending data succeed");
}

else

{

Serial.println("Failure...");

}
#endif

Upload the Code

After configuring the gateway project, upload it to the board. Try compiling and uploading the sketch to your ESP32 with
program upload BAUD 115200. Also after it’s uploaded, open up your serial monitor and set the baud rate to 115200.
The sketch may take a long time to set up the first time through — it will format your SPIFFS file system and create a non-
volatile configuration file. Once that’s complete, you should see the ESP32 attempt to connect to your WiFi network, then

initialize the radio.

2. Connecting Gateway to NU-lIoT

Without the Wi-Fi network, our device won’t have a link to connect to the Internet. UNL Wi-Fi is now open for IoT device

enrollment and gives up a big advantage.

Acquire the MAC address

After uploading your gateway program, you would see the below message when the system is starting up. Find a line that

includes the MAC address of your device, and save it

@ COM14 - O x

| Send
——

e
\MAC: 3c:71l:bf:c7:b0:3c, Plen=17 »
»Ilqupurlnl::(,b. I 0

0:1:2. WiFi1i connect SSID=NU-Connect, pass=

A WlanStatus:: CONNECTED to NU-Connect

Host esp32-c7b03c WiFi Connected to NU-Connect on IP=10.43.140.247
Local UDP port=1700

|Connection successful

Gateway ID: 3C71BFFFFFC7B03C, Listening at SF7 on 903.9%0 Mhz.
setupOta:: Started

Ready

IP address: 10.43.140.247

Time: Monday 02:28:16

Gateway configuration saved

WWW Server started on port 80 W

[] Autoscroll [_] Show timestamp Newline ~| 115200 baud Clear output

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux

Connect it to NU-loT

Connect your computer wifi to NU-IoT instead of eduroam to register your LoRa gateway. Each group will have one gateway
so it should only be done once. You have to register your device from campus network. After visiting to

https://its.nebraska.edu/network/iot you will see this page. Select “IoT Registration Portal” and continue.

[T iot * [Login x [Create Device x +

« 5 O W lO 8 https://its.nebraska.edu/network/iot

o COVID-19 UPDATE: NU is open. Faculty/staff are working in-person and campuses are open for in-perso

UNIVERSITY OF NEBRASKA BOX OPEN NEBERASKA STRATEGIC PLAN POLICIES §
N Blvmsm]DF
e _ INFORMATION GETTO KNOW COLLABORATION IN INNOVATIC
TECHNOLOGY SERVICES ITS ACTION HUB

U N O

Register loT Device

loT devices such as gaming consoles, printers, and wireless streaming hardware can receive

infernet access by completing the loT Regisiration process.

Procedure

1. While on a campus network, open the loT Regisiration portal in your default browser.

2. On the loT Regisiration porial, use your Campus Identity fo authenticate. Your username
must include the campus domain. Example: [doe2@nebraska.edu (@unk.edu, @unl.edy,

@unomaha.edu).

3. In the loT Registration portal you will be able to add or manage existing loT devices.

Each device will receive a unique password to authenticate on the NU-loT wireless SSID

Don’t know your Campus Identity?

Use your smartphone or another computer with internet access and visit

https:/ /trueyou.nebraska.edu to manage your identity.

https://its.nebraska.edu/network/iot

After logging in with your UNL account, you will the following page. Put the MAC address on the bar and enroll this

gateway.

* MAC Address:

MAC address of the device.

. loT-class-qw
Device Name: 9

Name of the device.
*Email: Psvbedi3@huskers.unl.edu

Email to send detailed receipt.

@® Email

Where would you like your
I Text Message
credentials sent?

) Beth

(| Enable AirGroup

AirGroup uses device ownership and location information to limit the printers and

AirGroup:

Apple TVs available to network users.

Account Expiration: 1 yeor from now

* Account Role: Clients IoT Device Role

s |" CREATE DEVICE

* Registered By: s7181417

Test it!

Modify the password field in the ESP-sc-gway.h.You can test it by looking at the messages print out by the serial monitor. If it

says connection is successful then we can continue to the next step.

3. Setting up The Azure loT Hub
Enable Student Credit

Go to Azure for students and click start free. Login with your UNL email and password. Then activate your student benifit

credit in that account.

loT Hub

Click to create a resource in azure portal. In the search box search ‘IoT Hub’ and select it. Then click ‘create’.

Home > Create aresource > Marketplace >

loT Hub

Microsoft

'x loT Hub ¢ Add to Favorites
L
Microsoft
* 4.2 (1050 Marketplace ratings) ‘ * 4.2 (700 external ratings)

Plan

7]

Overview Plans Usage Information + Support Reviews

Simultaneously support millions of connected devices—whether they run Windows, Linux, or real-time operating systems. Then monitor performance and send commands to
accelerate your digital transformation.

Media

AMmvn mrmdiirtbr femmn Kicemeraf conall

Select ‘Azure for Students’ as the subscription. Add it in a resource group. If you do not have a resource group create a new.

Put a name for your IoT hub and select region as ‘Central US’.

https://azure.microsoft.com/en-us/free/students/

Home > Create aresource > loT Hub >

loT hub

Microsoft

Basics Networking ~ Management Tags Review + create

Create an IoT hub to help you connect, monitor, and manage billions of your loT assets. Leam more

Project details

Choose the subscription you'll use to manage deployments and costs. Use rescurce groups like folders to help you
organize and manage resources.

Subscription * @ [Azure for Students V]

L

Resource group * @ [(New) csce838 v
Create new

Instance details
loT hub name * @ [PrashantsubediloTHub -]
Region* © [Central Us ~]

Now click on the ‘Management’ tab. Select ‘F1: Free tier’ as your pricing and scale tier. Keep others as the default settings.

Now Click ‘Review+create’ button from the bottom. After a while you are getting your new azure IoT hub.

For this free tier hub, you can exchange a total of 8000 messages per day. Therefore, program your device accordingly so that

it does not flood your cloud with messages and finish the quota.

IoT Device for the Hub

Once you have the hub, now add an IoT device in it. Click to the newly created hub. Then click on ‘Devices’ from the left side

column.

Home > loT Hub > PrashantSubediloTHub

loT Hub « 18 PrashantSubediloTHub | Devices = - X
University of Nebraska-Lincoln (uofnelincoln.onmi. loT Hub
+ Create 33 Manage view v - <« View, create, delete, and update devices in your loT Hub.
[Fitter for any field & Overview Device name
Name * Activity log enter device ID
i Acces conro (AH) > Findusing a query

% PrashantSubediloTHub
@ Tegs + Add Device () Refresh < Assigntags [il Delete

£# Diagnose and solve problems
Events Device ID Status Last Status Update Authentication Type Cloud to Device Message Count
@ Pricing and scale
Device management There are no loT devices to display.
W Devices
& [oTEdge
Configurations
@ Updates

B Queries

Hub settings

@

Built-in endpoints
Y. Message routing
@ File upload

“- Failover

1l Properties

A Locks

Security settings

. Identity

Page of 1 Shared access policies

Now click on Add Device button. Put a ‘Device ID’ on it. Select ‘ Authentication type’ as symettric key and check ‘Auto-
generate keys’ key option. Make ‘Connect this device to an IoT hub’ enable. Click ‘Save’ on the bottom. It will create an [oT

device for your IoT hub.

Now click on that device. It will show all information of that device. Copy the ‘Primary Connection String’ of it. This

connection string needs to be added into static const char* connectionString variable inside ESP32 gateway’s code.

e o 1)

Home > loT Hub > PrashantSubediloTHub | Devices »

iot-hub-1 » - X

PrashantSubediloTHub

[Z) Save [Message to Device > Direct method - Add Module Identity "= Devicetwin % Manage keys ~ () Refresh

Device D @ [iot-nus-1 o
Primary Key © [=|n
Secondary Key @ [= 2| D
Primary Connection String @ [=|n
Secondary Connection String © [=|h
Tags (edin No tags

Enable connection to loT Hub @ (®) enable () Disable

Parent device 0 No parent device

&
Module Identities Configurations

Module ID Connection State Connection State Last Updated ... Last Activity Time (UTC)

There are no module identities for this device.

We’ll need these keys to program your ESP32 so leave this page up on your browser. After finishing the gateway code, let’s

open up the Arduino IDE again. It’s time to program the node!

4. Setting up your device/application

LMIC

e Why not Radiohead?
o Radiohead is an amateur library for accessing the radio chip hardware. It is not designed for standardized
work.
e What is LMIC (LoraMAC-in-C)
o LoRa MAC implementation in C
o An real-time OS supports it
o LoRa communications are supported

o Highly professional and integrated library

Installing LMIC library

We’ll be setting up the SAMD21 Pro RF as a node using a library written by Matthijs Kooijman which is a modified version
of “IBM’s LMIC (LoraMAC-in-C)” library. The latest repo is maintained by a company named MCCI. You can download and

manually install it from the GitHub Repository.

Configurations

The LoRa settings should match
The spreading factor, frequency, bandwidth should match your gateway configuration.

Configure LMIC

1. This modified example takes directly from the example code provided by the library with a two changes: the
function calls to " Serial " will need to be replaced with " SerialUSB " and changes to the pin mapping that is
consistent with the SAMD21 Pro RF. Before we look at the code you’ll first need to modify the
Imic_project_config.h file that came with the LMIC Arduino Library.

2. Find your Arduino libraries folder and navigate to ...libraries/arduino-LMIC/project_config/. You should find a
file called Imic_project_config.h. Open it in any text editor and find the lines where CFG us915 is defined. It
should look like this:

//#define CFG_eu868 1

#define CFG_us915 1

https://github.com/mcci-catena/arduino-lmic

// This is the SX1272/SX1273 radio, which is also used on the HopeRF

// RFM92 boards.

/#define CFG_sx1272_radio 1

// This is the SX1276/SX1277/SX1278/SX1279 radio, which is also used on
// the HopeRF RFM95 boards.

#define CFG_sx1276_radio 1

Configuring Serial for SAMD21

Remember to change your serial library lines of your SAMD21 Pro RF to SerialUSB

Example Code for Sparkfun pro RF LoRaWAN
implementation

/***

* Copyright (c) 2015 Matthijs Kooijman

* Copyright (c) 2018 Terry Moore, MCCI Corporation

*

* Permission is hereby granted, free of charge, to anyone

* obtaining a copy of this document and accompanying files,

* to do whatever they want with them without any restriction,

* including, but not limited to, copying, modification and redistribution.

* NO WARRANTY OF ANY KIND IS PROVIDED.

* This example transmits data on hardcoded channel and receives data
* when not transmitting. Running this sketch on two nodes should allow

* them to communicate.

***/

#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>

// we formerly would check this configuration; but now there is a flag,

// in the LMIC, LMIC.noRXIQinversion;

// if we set that during init, we get the same effect. If

// DISABLE INVERT IQ ON RX is defined, it means that LMIC.noRXIQinversion 1is
// treated as always set.

//

// #if !defined(DISABLE INVERT IQ ON_RX)

// #error This example requires DISABLE INVERT IQ ON RX to be set. Update \
// lmic project config.h in arduino-lmic/project config to set it.

// #endif

// How often to send a packet. Note that this sketch bypasses the normal

// LMIC duty cycle limiting, so when you change anything in this sketch

// (payload length, frequency, spreading factor), be sure to check if

// this interval should not also be increased.

// See this spreadsheet for an easy airtime and duty cycle calculator:

// https://docs.google.com/spreadsheets/d/1voGAtQAjClgBmaVuP1ApNKslekgUjavHuUVQIXy
YSvNc

#define TX INTERVAL 60000 //Delay between each message in millidecond.

// Pin mapping for SAMD21
const lmic pinmap lmic pins = {
.nss = 12,//RFM Chip Select
.rxtx = LMIC_UNUSED PIN,
7,//RFM Reset
{6, 10, 11}, //RFM Interrupt, RFM LoRa pin, RFM LoRa pin

.rst

.dio

// These callbacks are only used in over-the-air activation, so they are

// left empty here (we cannot leave them out completely unless

// DISABLE JOIN is set in arduino-lmoc/project config/lmic project config.h,
// otherwise the linker will complain).

void os getArtEui (ul_t* buf) { }

void os getDevEui (ul t* buf) { }
void os getDevKey (ul t* buf) { }

void onEvent (ev t ev) {

}

osjob t txjob;
osjob t timeoutjob;

static void tx func (osjob _t* job);

// Transmit the given string and call the given function afterwards
void tx(const char *str, osjobcb t func) {

os radio(RADIO RST); // Stop RX first

delay(1l); // Wait a bit, without this os radio below asserts, apparently becaus
e the state hasn't changed yet

LMIC.datalLen = 0;

while (*str)

LMIC.frame[LMIC.dataLen++] = *str++;

LMIC.osjob.func = func;

0os radio(RADIO TX);

SerialUSB.println("TX");

// Enable rx mode and call func when a packet is received
void rx(osjobcb t func) {
LMIC.osjob.func = func;
LMIC.rxtime = os getTime(); // RX now
// Enable "continuous" RX (e.g. without a timeout, still stops after
// receiving a packet)
0os_radio(RADIO RXON);
SerialUSB.println("RX");

static void rxtimeout func(osjob t *job) {

digitalWrite(LED BUILTIN, LOW); // off

static void rx_func (osjob t* job) {
// Blink once to confirm reception and then keep the led on
digitalWrite(LED BUILTIN, LOW); // off
delay(10);
digitalWrite(LED BUILTIN, HIGH); // on

// Timeout RX (i.e. update led status) after 3 periods without RX
os setTimedCallback(&timeoutjob, os getTime() + ms2osticks(3*TX INTERVAL), rxti

meout func);

// Reschedule TX so that it should not collide with the other side's
// next TX
os_setTimedCallback(&txjob, os getTime() + ms2osticks(TX INTERVAL/2), tx func);

SerialUSB.print("Got ");

SerialUSB.print (LMIC.datalen);
SerialUSB.println(" bytes");
SerialUSB.write(LMIC.frame, LMIC.datalen);
SerialUSB.println();

// Restart RX

rx(rx_func);

static void txdone func (osjob t* job) {

//rx(rx_func);

// log text to USART and toggle LED
static void tx func (osjob t* job) {
// say hello
tx("Hello, world!", txdone func);

// reschedule job every TX INTERVAL (plus a bit of random to prevent

// systematic collisions), unless packets are received, then rx_ func

// will reschedule at half this time.

os_setTimedCallback(job, os getTime() + ms2osticks(TX INTERVAL + random(500)),
tx_ func);

}

// application entry point

void setup() {
SerialUSB.begin(115200);
while(!SerialUSB);
SerialUSB.println("Starting");

// #ifdef VCC ENABLE

// // For Pinoccio Scout boards

// pinMode (VCC ENABLE, OUTPUT);

// digitalWrite(VCC ENABLE, HIGH);

// delay(1000);

// #endif

pinMode(LED BUILTIN, OUTPUT);

// initialize runtime env

0s init();

// this is automatically set to the proper bandwidth in kHz,
// based on the selected channel.

uint32 t uBandwidth;

LMIC.freq = 903900000;

uBandwidth = 125;

LMIC.datarate = US915 DR SF7; // DR4

LMIC. txpow = 21;

// disable RX IQ inversion

LMIC.noRXIQinversion = true;

// This sets CR 4/5, BW125 (except for EU/AS923 DR SF7B, which uses BW250)
LMIC.rps = updr2rps(LMIC.datarate);

SerialUSB.print("Frequency: "); SerialUSB.print(LMIC.freq / 1000000);
SerialUSB.print("."); SerialUSB.print((LMIC.freq / 100000) % 10);
SerialUSB.print("MHz");

SerialUSB.print(" LMIC.datarate: "); SerialUSB.print(LMIC.datarate);

SerialUSB.print(" LMIC.txpow: "); SerialUSB.println(LMIC.txpow);

// This sets CR 4/5, BW125 (except for DR SF7B, which uses BW250)
LMIC.rps = updr2rps(LMIC.datarate);

// disable RX IQ inversion

LMIC.noRXIQinversion = true;

SerialUSB.println("Started");
SerialUSB. flush();

// setup initial job
os setCallback(&txjob, tx func);

void loop() {
// execute scheduled jobs and events

os_runloop once();

5. Receiving Data on Azure from your device

Stream Your Data

Now we have both devices ready and cable to transmit and receive LoRa packets. In addition, in Azure we have an IoT device
inside the azure IoT hub. To access data from this device we need a “Stream Analytics job” or any othe equivalent data access

resource. In this lab we will utilize Stream Analytics job.

Similar to all other resources creation we now need to click the create button and search for Stream Analytics job. After
clicking on create button we have fill the required information and then click on the ‘Review+create’ button at the bottom.

Then click ‘Create’ button

Home » Stream Analytics jobs >

New Stream Analytics job
A Changes on this step may reset later selections you have made. Review all options prior to deployment.

Basics Storage Tags Review + create

Azure Stream Analytics is a fully managed, SQL-based stream processing engine designed to help you tackle scenarios
like streaming ETL to Azure Data Lake Storage, real-time dashboarding with Power Bl, event driven applications with
Azure SQL DB & Cosmos DB, remote monitoring, predictive maintenance, and more. Learn maore

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Subscription * (@) | Azure for Students ~ |
I_ Resource group * (@ | csce838 7 |
Create new

Instance details

Name * | csce_B38 \/|
Region* (@ | Central US iy |
Hosting environment @ @ Cloud

(:) Edge

Streaming unit details

Streaming units (SUs) represents the computing resources that are allocated to execute a Stream Analytics job. The
higher the number of SUs, the more CPU and memory resources are allocated for your job. The number of SUs can be
modified once you create the job. You will be charged for the job's Streaming Units only when the job runs.

Learn more

Streaming units * 1 ~

Once the job is created click on ‘Go to resource’ button.

|
e e

Home > CreateForm-20220913224423 | Overview >

csce 838 x - X

Stream Analytics job

« D Start [[i] Delete —> Move v (O Refresh (©) Share feedback

% Overview O Crested 5
Activity log
fR Access control (IAM) ~ Essentials JSON View
€ Tags Resource group (move) : csce838 Created Tuesday, September 13, 2022 10:47 PM

Location Central US Started
/2 Diagnose and solve problems

Status Created Output watermark
Settings Subscription (move) : Azure for Students Cluster + Shared
Il Properties Subseription ID 8244560-4228-4022-8aTe-b76 1cc9Basaf Hosting environment : Cloud
B Locks Tags (edit) Click here to add tags
Job topology .

Getstarted Properties Monitoring Tutorials
& Inputs
M Functions Build an end-to-end serverless streaming pipeline with just a few clicks
“> Query Azure Stream Analytics is a fully managed, real-time stream processing service designed to help you tackle scenarios such

as streaming ETL to ADLS Gen2 or Synapse SQL, real time apps with Cosmos DB or SQL DB, live dashboarding with Power
= Outputs BI, or real-time alerting with Azure Functions. Learn more
Configure
-
B, Environment 2 <>
£ Storage account settings Ingest data Analyze data Output data Enable logging
. Stream Analytics jobs connect to one or more Stream Analytics jobs uses Stream Analytics Stream Analytics jobs connects to one or more Turning on diagnostic settings to Log Analytics

i Scale data inputs. Each input defines a connection to Query Language (SAQL) to transform or analyze data outputs. There are several output types to will allow you te easily troubleshcot any erers
® Locale an existing data source. your real time data. which you can send transformed data. your job may encounter:
@ Eror policy
% Compatibility level

Managed Identity

Developer tools

Here we can see that we need to select inputs and outputs for this job. First click on ‘Inputs’. Then click on ‘Add stream input’
and select ‘ToT Hub’. Give an alias name and select your IoT Hub from the drop-down menu. Click ‘Save’. Now our IoT hub

is connected as an input stream.

loT Hub X

New input

Input alias *
csce-83 8-streard "

I{:} Provide loT Hub settings manually
@ Select loT Hub from your subscriptions

Subscription
| Azure for Students gy |
loT Hub * (D
| PrashantSubediloTHub R |

Consumer group * (3)

| SDefault v |

Shared access policy name * (3

| iothubowner N |

Shared access policy key (O

Endpeoint &

| Messaging e |

Partition key @

Event serialization format * (&

| JSON v |
Encoding @
| UTF-8 v |

Event compression type &)

| hAana R

Save

For this lab, we won’t need any ouput source, rather we will query the input stream directly to see the data beign sent to

IoTHub. For this, go to Query tab in the stream analytics job and add the following query

SELECT

*

FROM

[csce-838-stream]

Replace csce-838-stream with your input alias. You should see the messages sent to IoT hub in the result section as show in

the screenshot below.

Expected Results

Serial monitor from the Sparkfun pro RF. From there you should see the messages showing transmission or run-time errors

defined in the program.

JdevfttyACMO - o

Send
22:18:18.549 -= TX
22:19:18.862 -> TX
22:20:19.326 -= TX
22:21:19.671 -> TX
22:22:20.123 -=> TX
22:23:20.320 -> TX
22:24:20.346 -> TX
22:25:20.418 -= TX
22:26:20.584 -> TX
22:27:20.724 -> TX
22:28:20.727 -> TX
22:29:21.156 -= TX
22:30:21.302 -> TX
22:31:21.441 -> TX
22:32:21.576 -= TX

Autoscroll @ Show timestamp Mewline - 115200 baud ¥ Clear output

If the gateway successfully received the packet, its serial monitor will show the messages:

Send

22:24:06.019 -> MAC: cc:50:e3:8d:cd:48, len=17

22:24:06.019 -> WlanConnect Init para @

22:24:06.119 -> B:1:3. WiFi connect SSID=QuickAccess, pass=cxph3iciqBf8rv7
22:24:15.125 -> A WlanStatus:: CONNECTED to QuickAccess

22:24:15.257 -> Host esp32-8dcd48 WiFi Connected to QuickAccess on IP=192.168.1.113
22:24:15.457 -> Local UDP port=1760

22:24:15.457 -> Connection successful

22:24:16.155 -> Gateway ID: CCSOE3FFFF8DCD48, Listening at SF9 on 903.%0 Mhz.
22:24:16.421 -> setupOta:: Started

22:24:16.421 -> Ready

22:24:16.421 -> IP address: 192.168.1.113

22:24:17.020 -> Time: Friday 05:24:16

22:24:17.020 -> Gateway configuration saved

22:24:17.020 -> WaW Server started on port 80

Initializing SNTP

22:24:18.150 -> Info: SNTP initialization complete

22:24:18.183 -> Info: IoT Hub SDK for C, version 1.1.23

22:24:20.911 -> Info: >>>Connection status: connected

22:24:20.911 -> Initializing IoT hub success.

22:25:20.551 -> G addLog:: fileno=@, rec=1: 1 50 31 @ CC 50 E3 FF FF 8D CD 48 {"rxpk":[{"tmst":75821255,"chan":0,"rfch":@,"freq":903.900024,"stat":1, "modu": "LORA", "datr":"SF7BW125", "codr":"4/5","lsnr":9,"
22:25:20.551 -> Hello, world!

22:25:20.584 -> 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21

22:25:20.584 -> start sending events.

22:25:20.584 -> {"Message": "Hello, world!"}

22:25:20.584 -> Info: >>>=IoTHubClient LL SendEventAsync accepted message for transmission to IoT Hub.

22:25:21.182 -> Info: >>>Confirmation[@] received for message tracking id = @ with result = IOTHUB CLIENT_CONFIRMATION_OK
22:25:21.182 -> Sending data succeed

The data panel from Azure stream analytics query tab will look like this if all the links are successfully established. This

means you now have your end to end IoT application.

L e s 6

Home > CreateForm-20220913224423 | Overview > csce 838

.- csce_838 | Query # - x

Stream Analytics job

« Query language docs ~ [OpeninVs Code () Share feedback () Refresh

% Ovenview = v & Inputs (1) T | > Testquery [Savequery X Discard changes

csce-838-stream

Activity log = - 1 ‘SELECT N
5 B
fa Access control (IAM) 2 Qutputs (1) + 3 FROM
€ T b output 4 [csce-838-stream]
£ Diagnose and solve problems 0 Functions © +
Settings
1l Properties
B Locks
Job topology
= Inputs
M Functions
<> Query
Input preview Test results
= Outputs i —
Showing sample events from 'csce-838-stream’
Configure
® . == Table {} Raw | () Refresh (& Selecttimerange 7 Upload sample input L Download sample data
-, Environmen
Message EventProcessedUtcTime Partitionld EventEnqueuedUtcTime loTHub
& Storage account settings string datetime bigint datetime string
2 Seale *Hello, world!" "2022-09-14T03:51:55.26028622" 1 *2022-09-14T03:51:50.70800002" {"Messageld"null"Correlationld”null,"C...
@ Locale "Hello, world!" "2022-09-14T03:5155.26028622" 1 "2022-09-14T03:51:49.2230000Z" {"Messageld"null,"Correlationld™null,"C..
5 Event ordering "Hello, world!" "2022-0-14T03:51:55.26028622" 1 "2022-09-14T03:51:47.86300002" {"Messageld"null"Correlationld”null,"C...
@ Error policy "Hello, world!" "2022-09-14T03:5155.26028622" 1 "2022-09-14T03:51:46.5820000Z" {"Messageld"null,"Correlationld™null,"C..
@ Compatibilty level "Hello, world!" "2022-0-14T03:51:55.26028622" 1 "2022-08-14T03:51:45.78400002" {"Messageld"null"Correlationld”null,"C...

Managed Identity

Developer tools

Lab Assignment

In this lab, you will work with your teammates and get familiar with our IoT system.

A lab report is required from everyone in the group. You will need to work together as you need to share the gateway. In the

group report, each member needs to provide individual screenshots of Azure account and serial monitor outputs.

In the class: Close the LoORaWAN Jumpers

One last thing. On the underside of the SAMD21 Pro RF there are two jumpers labeled LoRaWAN. Closing these jumpers

will tell the module that we’re broadcasting in the modulation scheme unique to LoRaWAN.

Assighment

Requirements

1. Finish the helloworld example

1. Record the procedure of setting up the link from your device to IoT Hub with screenshots

2. Keep the code from the previous lab (lab 3), and merge it with the LMIC example code for packet transmissions

1. Temporally remove the radio operations in the code and use the LMIC code

2. Use your packet construction modules and average temperature reading module, etc.

3. Maintain your packet structure from lab 3 and make necessary changes in the gateway to prepare a json data packet.
Then send packets with temperature sensor data to the Azure cloud every 60 seconds. Instead of using timers, use

LMIC’s TX_INTERVAL.

4. Download the json file from Azure and share the contents of it in the report.

Results

5. Code that fulfills each requirement in this lab

1. Each function in this system should be separately presented with explanation, entire code snippet will not

be accept

6. Serial message from

1. Sparkfun pro RF device

2. LoRa gateway

7. Screenshots from Azure and json for the data reporting results.

Report format

e Report:
Development Process
- Record your development process
- Acknowledge any resources that you found and helped you with your development (open-source
projects/forum threads/books)
- Record the software/hardware bugs/pitfalls you had and your troubleshooting procedure.

o Results

= Required results from the section above

= The entire program (Arduino sketch) in the appendix (No screenshots will be accepted)
Submission Instructions:

1. Submit your lab on Canvas on or before the deadline (Sep 23rd, 8:29 am)

2. Your submission should include one single pdf explaining everything that was asked in the tasks and screenshots if
any

3. Your submission should also include all the code that you have worked on with proper documentation

4. Failing to follow the instructions will make you lose points

Reference

1. https://learn.sparkfun.com/tutorials/sparkfun-lora-gateway-1-channel-hookup-guide/all

2. https://learn.sparkfun.com/tutorials/lorawan-with-prorf-and-the-things-network/all#example-ifttt-integration

https://learn.sparkfun.com/tutorials/sparkfun-lora-gateway-1-channel-hookup-guide/all
https://learn.sparkfun.com/tutorials/lorawan-with-prorf-and-the-things-network/all#example-ifttt-integration

3. https://www.youtube.com/playlist?list=PLIrxDOHtieHh5_pOv-6xsMxS3URD6XD52
4. https://learn.sparkfun.com/tutorials/sparkfun-samd?21-pro-rf-hookup-guide/lorawan-arduino-library-and-example
5. Lea, Perry. Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication

infrastructure, edge computing, analytics, and security. Packt Publishing Ltd, 2018.

https://www.youtube.com/playlist?list=PLlrxD0HtieHh5_pOv-6xsMxS3URD6XD52
https://learn.sparkfun.com/tutorials/sparkfun-samd21-pro-rf-hookup-guide/lorawan-arduino-library-and-example

