db.py 16.7 KB
Newer Older
aknecht2's avatar
aknecht2 committed
1
from pymongo import MongoClient
2
import pymongo.errors
3
4
5
import gridfs
import sys
import traceback
6
import os
7
import itertools
8
import chipathlon.conf
9
from pprint import pprint
10
import hashlib
aknecht2's avatar
aknecht2 committed
11

12

13
14
15
class MongoDB(object):

    def __init__(self, host, username, password):
16
17
        self.client = MongoClient(host)
        self.db = self.client.chipseq
18
        try:
19
            self.db.authenticate(username, password, mechanism="SCRAM-SHA-1")
20
21
22
23
24
25
26
        except:
            print("Could not authenticate to db %s!" % (host,))
            print traceback.format_exc()
            sys.exit(1)
        self.gfs = gridfs.GridFS(self.db)
        return

27
28
29
30
31
32
33
34
35
36
37
38
    def delete_result(self, result_id):
        # Make sure result exists
        cursor = self.db.results.find({
            "_id": result_id
        })
        if cursor.count() == 1:
            result = cursor.next()
            self.gfs.delete(result["gridfs_id"])
            self.db[result["result_type"]].delete_many({"result_id": result["_id"]})
            self.db.results.delete_one({"_id": result["_id"]})
        else:
            print "result_id %s doesn't exist." % (result_id,)
39
40
        return

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    def check_result(self, control_sample_ids, experiment_sample_ids, ref_genome, result_type, params):
        try:
            query = {
                "control_sample_ids": {
                    "$all": control_sample_ids
                },
                "experiment_sample_ids": {
                    "$all": experiment_sample_ids
                },
                "result_type": result_type,
                "ref_genome": ref_genome
            }
            for job_name in params:
                param_keys = params[job_name].keys()
                if len(param_keys) == 0:
                    query[job_name] = {"$exists": True}
                else:
                    for param_name in param_keys:
                        query[job_name + "." + param_name] = params[job_name][param_name]
            cursor = self.db.results.find(query)
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with experiment_id %s: %s" % (experiment_id, e)
        return False

67
    def create_result(self, output_file, control_sample_ids, experiment_sample_ids, result_type, additional_data = {}, gfs_attributes = {}):
68
69
        # Make sure output_file exists
        if os.path.isfile(output_file):
70
            # Make sure that all control_sample_ids & experiment_sample_ids are valid
71
            # REMEMBER, these are ids for control & experiment SAMPLES
72
73
            valid_controls = [self.is_valid_sample(cid) for cid in control_sample_ids]
            valid_experiments = [self.is_valid_sample(eid) for eid in experiment_sample_ids]
74
75
76
77
78
79
80
81
            if all(valid_controls) and all(valid_experiments):
                # First, we load the output file into gfs
                with open(output_file, "r") as rh:
                    # Calling put returns the gfs id
                    gridfs_id = self.gfs.put(rh, filename=os.path.basename(output_file), **gfs_attributes)
                # Now, we create the actual result entry by combining all necessary info
                result_entry = {
                    "gridfs_id": gridfs_id,
82
83
                    "control_sample_ids": control_sample_ids,
                    "experiment_sample_ids": experiment_sample_ids,
84
85
86
87
88
89
90
91
                    "result_type": result_type
                }
                # Add additional attributes into the result_entry
                result_entry.update(additional_data)
                # Insert the entry into the database, and return the id
                result = self.db.results.insert_one(result_entry)
                return (True, "Result created successfully.", result.inserted_id)
            else:
92
                msg = "Not all input ids are valid.  The following are invalid: "
93
                for id_list, valid_list in zip([control_sample_ids, experiment_sample_ids], [valid_controls, valid_experiments]):
94
                    msg += ", ".join([id_list[i] for i, valid in enumerate(valid_list) if not valid])
95
96
97
98
        else:
            msg = "Specified output_file %s does not exist." % (output_file,)
        return (False, msg, None)

99
100
101
102
103
104
105
    def save_bam(self, bam_file, control_sample_ids, experiment_sample_ids, additional_data = {}):
        # Create result entry for bam files.  Since bam is a binary format, the file will only
        # be stored in GridFS
        valid, msg, result_id = self.create_result(bam_file, control_sample_ids, experiment_sample_ids, "bam", additional_data, gfs_attributes = {"file_type": "bam"})
        return (valid, msg, result_id)


106
    def save_bed(self, bed_file, control_sample_ids, experiment_sample_ids, additional_data = {}):
107
        # Create result_entry for bed_file
108
        valid, msg, result_id = self.create_result(bed_file, control_sample_ids, experiment_sample_ids, "bed", additional_data, gfs_attributes = {"file_type": "bed"})
109
110
111
112
113
        if valid:
            # Now we load the actual bed data into the bed collection.
            # Data is in a six column format
            # chr, start, end, name, score, strand
            # Load data using a list comprehension over lines,
114
115
116
            # then insert with insert_one()
            # Each document contains "n_lines" number of lines from the
            # result BED file.
117
            print "loading bed_data..."
118
            with open(bed_file, "r") as rh:
119
                msg = "Bed file successfully inserted."
120
121
                # Lazy load files in specified line chunk size
                n_lines = chipathlon.conf.result_lines_per_document
122
123
124
                line_set = list(itertools.islice(rh, n_lines))
                while line_set:
                    try:
125
126
127
128
                        result_lines = []
                        for line in line_set:
                            line_info = line.split()
                            line_record =  {
129
130
131
132
133
                                "chr": line_info[0],
                                "start": line_info[1],
                                "end": line_info[2],
                                "name": line_info[3],
                                "score": line_info[4],
134
                                "strand": line_info[5],
135
                            }
136
137
138
139
                            result_lines.append(line_record)

                        self.db.bed.insert_one({"result_id": result_id, "result_lines": result_lines})

140
141
142
143
144
                    except pymongo.errors.OperationFailure as e:
                        valid = False
                        msg = "Error inserting bed_file %s: %s" % (bed_file, e)
                    line_set = list(itertools.islice(rh, n_lines))
        return (valid, msg, result_id)
145

146
    def save_peak(self, peak_file, control_sample_ids, experiment_sample_ids, additional_data = {}):
147
        # Create result_entry for peak_file
148
        valid, msg, result_id = self.create_result(peak_file, control_sample_ids, experiment_sample_ids, "peak", additional_data, gfs_attributes = {"file_type": os.path.splitext(peak_file)[1][1:]})
149
150
151
152
        if valid:
            # Now we load the actual peak data into the collection
            # Data is in a 10 column format
            # chr, start, end, name, score, strand, signal_value, p_value, q_value, summit
153
154
            # Each document contains "n_lines" number of lines from the
            # result peak file.
155
            with open(peak_file, "r") as rh:
156
                msg = "Peak file successfully inserted."
157
158
                # Lazy load files in specified line chunk size
                n_lines = chipathlon.conf.result_lines_per_document
159
160
161
                line_set = list(itertools.islice(rh, n_lines))
                while line_set:
                    try:
162
163
164
165
                        result_lines = []
                        for line in line_set:
                            line_info = line.split()
                            line_record =  {
166
167
168
169
170
171
172
173
174
175
176
                                "chr": line_info[0],
                                "start": line_info[1],
                                "end": line_info[2],
                                "name": line_info[3],
                                "score": line_info[4],
                                "strand": line_info[5],
                                "signal_value": line_info[6],
                                "p_value": line_info[7],
                                "q_value": line_info[8],
                                "summit": line_info[9]
                            }
177
178
179
180
                            result_lines.append(line_record)

                        self.db.peak.insert_one({"result_id": result_id, "result_lines": result_lines})

181
182
183
184
185
                    except pymongo.errors.OperationFailure as e:
                        valid = False
                        msg = "Error inserting peak_file %s: %s" % (peak_file, e)
                    line_set = list(itertools.islice(rh, n_lines))
        return (valid, msg, result_id)
186

187
188
189
190
191
192
193
194
195
196
197
    def is_valid_sample(self, sample_accession):
        try:
            cursor = self.db.samples.find({
                "accession": sample_accession
            })
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with sample_accession %s: %s" % (sample_accession, e)
        return False

198
199
200
201
202
203
204
205
206
207
208
209
210
    def is_valid_experiment(self, experiment_id):
        try:
            cursor = self.db.experiments.find({
                "target": {"$exists": True},
                "revoked_files.0": {"$exists": False},
                "@id": "/experiments/%s/" % (experiment_id,)
            })
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with experiment_id %s: %s" % (experiment_id, e)
        return False

211
212
213
214
215
216
217
218
219
220
221
222
    def check_valid_samples(self):
        cursor = self.db.experiments.aggregate([
            {
                "$match": {
                    "target": {"$exists": True},
                    "revoked_files.0": {"$exists": False},
                    "assembly.0": {"$exists": True},
                    "assembly.1": {"$exists": False}
                }
            },
            {
                "$lookup": {
223
                    "from": "samples",
224
                    "localField": "uuid",
225
226
227
228
229
230
231
232
233
234
235
236
237
                    "foreignField": "experiment_id",
                    "as": "samples"
                }
            }
        ])
        total = 0
        has_samples = 0
        for document in cursor:
            total += 1
            if len(document["samples"]) > 0:
                has_samples += 1
        return (has_samples, total)

238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def get_assembly(self, experiment_id):
        valid = True
        msg = ""
        data = ""
        cursor = self.db.experiments.find({
            "target": {"$exists": True},
            "revoked_files.0": {"$exists": False},
            "assembly.0": {"$exists": True},
            "assembly.1": {"$exists": False},
            "@id": "/experiments/%s/" % (experiment_id,)
        })
        if cursor.count() == 1:
            document = cursor.next()
            data = document["assembly"][0]
aknecht2's avatar
aknecht2 committed
252
            msg = "Succesfully retrieved assembly for experiment with id '%s'.\n" % (experiment_id,)
253
254
        else:
            valid = False
aknecht2's avatar
aknecht2 committed
255
            msg = "Experiment with id '%s' does not exist.\n" % (experiment_id,)
256
257
        return (valid, msg, data)

Adam Caprez's avatar
Adam Caprez committed
258
    def fetch_from_gridfs(self, gridfs_id, filename, checkmd5=True):
259
260
261
262
263
264
265
266
        """
        :param gridfs_id: GridFS _id of file to get.
        :type gridfs_id: bson.objectid.ObjectId
        :param filename: Filename to save file to.
        :type filename: str

        Fetch the file with _id 'gridfs_id' from GridFS and save to the file 'filename'.
        """
267
268
269
270
271
272
273
274

        try:
            gridfs_file = self.gfs.get(gridfs_id)
            gridfs_md5 = gridfs_file.md5
        except gridfs.errors.NoFile as e:
            print "Error fetching file from GridFS!\nNo file with ID '%s'" % (gridfs_id)
            print e
            sys.exit(1)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

        try:
            output_fh = open(filename,'wb')
        except IOError as e:
            print "Error creating GridFS output file '%s':" % (filename)
            print (e.errno,e.strerror)
            sys.exit(1)

        hash_md5 = hashlib.md5()
        for chunk in gridfs_file:
            output_fh.write(chunk)
            hash_md5.update(chunk)

        output_fh.close()
        gridfs_file.close()

Adam Caprez's avatar
Adam Caprez committed
291
292
293
294
295
296
        if checkmd5:
            if gridfs_md5 == hash_md5.hexdigest():
                return True
            else:
                print "MD5 mismatch saving file from GridFS to '%s'" % (filename)
                return False
297
        else:
Adam Caprez's avatar
Adam Caprez committed
298
            return True
299

300
301
302
303
    def get_samples(self, experiment_id):
        valid = True
        msg = ""
        data = {}
304
305
306
307
        # First, check to make sure the target experiment is valid
        if self.is_valid_experiment(experiment_id):
            # Next, we check that there is a least 1 possible control
            check3 = self.db.experiments.find({
308
309
                "target": {"$exists": True},
                "revoked_files.0": {"$exists": False},
310
311
312
                "assembly.0": {"$exists": True},
                "assembly.1": {"$exists": False},
                "possible_controls.0": {"$exists": True},
313
314
                "@id": "/experiments/%s/" % (experiment_id,)
            })
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
            if check3.count() == 1:
                # Complicated aggregtaion pipeline does the following steps:
                # 1. Find the experiment that matches the given id
                # 2. Join samples into the collection by exp_id
                # 3. Iterate through possible_controls
                # 4. Join possible_control data into control_exps
                # 5. Iterate through control_exps
                # 6. Join samples into the control_exps by exp_id
                # 7. Re-aggregate all data into arrays
                pipeline = [
                    {
                        "$match": {
                            "target": {"$exists": True},
                            "revoked_files.0": {"$exists": False},
                            "assembly.0": {"$exists": True},
                            "assembly.1": {"$exists": False},
                            "possible_controls.0": {"$exists": True},
                            "@id": "/experiments/%s/" % (experiment_id,)
333
                        }
334
335
336
337
338
339
340
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "uuid",
                            "foreignField": "experiment_id",
                            "as": "samples"
341
                        }
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
                    },
                    {
                        "$unwind": "$possible_controls"
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "possible_controls.uuid",
                            "foreignField": "experiment_id",
                            "as": "possible_controls.samples"
                        }
                    },
                    {
                        "$group": {
                            "_id": "$_id",
                            "possible_controls": {"$push": "$possible_controls"},
                            "samples": {"$push": "$samples"}
                        }
                    }
                ]
                cursor = self.db.experiments.aggregate(pipeline)
                # We should have only 1 document
                document = cursor.next()
                control_inputs = [sample for control in document["possible_controls"] for sample in control["samples"] if ("file_type" in sample and sample["file_type"] == "fastq")]
                experiment_inputs = [sample for sample in document["samples"][0] if ("file_type" in sample and sample["file_type"] == "fastq")]
                if (len(control_inputs) > 0 and len(experiment_inputs) > 0):
                    msg = "Succesfully retrieved input files for experiment with id '%s'.\n" % (experiment_id,)
                    data = {
                        "control": control_inputs,
                        "experiment": experiment_inputs
                    }
373
374
                else:
                    valid = False
375
                    msg = "Experiment with id '%s' has %s possible control inputs, and %s possible experiment inputs.\n" % (experiment_id, len(control_inputs), len(experiment_inputs))
376
377
            else:
                valid = False
378
                msg = "Experiment with id '%s' does not have possible_controls.\n" % (experiment_id,)
379
380
        else:
            valid = False
381
            msg = "Experiment with id '%s' is not valid!  It may not exist, or it may be missing required metadata.\n" % (experiment_id,)
382
        return (valid, msg, data)