db.py 18.4 KB
Newer Older
aknecht2's avatar
aknecht2 committed
1
from pymongo import MongoClient
2
import pymongo.errors
3
4
5
import gridfs
import sys
import traceback
6
import os
7
import itertools
8
import time
9
import chipathlon.conf
10
from pprint import pprint
11
import hashlib
aknecht2's avatar
aknecht2 committed
12

13

14
15
class MongoDB(object):

16
17
    def __init__(self, host, username, password, debug=False):
        self.debug = debug
18
19
20
        self.host = host
        self.username = username
        self.password = password
21
22
        self.client = MongoClient(host)
        self.db = self.client.chipseq
23
        try:
24
            self.db.authenticate(username, password, mechanism="SCRAM-SHA-1")
25
26
27
28
29
30
31
        except:
            print("Could not authenticate to db %s!" % (host,))
            print traceback.format_exc()
            sys.exit(1)
        self.gfs = gridfs.GridFS(self.db)
        return

32
33
34
35
36
37
38
39
40
41
42
43
    def delete_result(self, result_id):
        # Make sure result exists
        cursor = self.db.results.find({
            "_id": result_id
        })
        if cursor.count() == 1:
            result = cursor.next()
            self.gfs.delete(result["gridfs_id"])
            self.db[result["result_type"]].delete_many({"result_id": result["_id"]})
            self.db.results.delete_one({"_id": result["_id"]})
        else:
            print "result_id %s doesn't exist." % (result_id,)
44
45
        return

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    def _get_result_query(self, result, genome):
        query = {
            "result_type": result.file_type,
            "assembly": genome.assembly,
            "timestamp": {"$exists": True},
            "file_name": result.full_name
        }
        # In the case that there are 0 samples we just want to check for existence.
        control_sample_accessions = result.get_accessions("control")
        signal_sample_accessions = result.get_accessions("signal")
        query["control_sample_accessions"] = {"$all": control_sample_accessions} if (len(control_sample_accessions) > 0) else {"$exists": True}
        query["signal_sample_accessions"] = {"$all": signal_sample_accessions} if (len(signal_sample_accessions) > 0) else {"$exists": True}
        for job in result.all_jobs:
            job_args = job.get_db_arguments()
            arg_keys = job_args.keys()
            if len(arg_keys) == 0:
                query[job.job_name] = {"$exists": True}
            else:
                for arg_name in arg_keys:
                    query[job.job_name + "." + arg_name] = job_args[arg_name]
66
67
        if self.debug:
            print "Result query: %s" % (query,)
68
69
70
71
72
73
74
75
76
77
78
79
        return query

    def result_exists(self, result, genome):
        try:
            cursor = self.db.results.find(self._get_result_query(result, genome))
            return cursor.count() > 0
        except pymongo.errors.OperationFailure as e:
            print "Error checking result [%s]: %s" % (file_name, e)
        return False


    def get_result(self, result, genome):
80
        try:
81
            cursor = self.db.results.find(self._get_result_query(result, genome))
82
83
            if cursor.count() > 0:
                return cursor.sort("timestamp", pymongo.DESCENDING).next()
84
        except pymongo.errors.OperationFailure as e:
85
            print "Error checking result [%s]: %s" % (file_name, e)
86
        return None
87

88
    def create_result(self, output_file, control_sample_ids, experiment_sample_ids, result_type, additional_data = {}, gfs_attributes = {}):
89
90
        # Make sure output_file exists
        if os.path.isfile(output_file):
91
            # Make sure that all control_sample_ids & experiment_sample_ids are valid
92
            # REMEMBER, these are ids for control & experiment SAMPLES
93
94
            valid_controls = [self.is_valid_sample(cid) for cid in control_sample_ids]
            valid_experiments = [self.is_valid_sample(eid) for eid in experiment_sample_ids]
95
96
97
98
99
100
101
102
            if all(valid_controls) and all(valid_experiments):
                # First, we load the output file into gfs
                with open(output_file, "r") as rh:
                    # Calling put returns the gfs id
                    gridfs_id = self.gfs.put(rh, filename=os.path.basename(output_file), **gfs_attributes)
                # Now, we create the actual result entry by combining all necessary info
                result_entry = {
                    "gridfs_id": gridfs_id,
103
104
                    "control_sample_ids": control_sample_ids,
                    "experiment_sample_ids": experiment_sample_ids,
105
106
107
                    "result_type": result_type,
                    "file_name": output_file,
                    "timestamp": time.time()
108
109
110
111
112
113
114
                }
                # Add additional attributes into the result_entry
                result_entry.update(additional_data)
                # Insert the entry into the database, and return the id
                result = self.db.results.insert_one(result_entry)
                return (True, "Result created successfully.", result.inserted_id)
            else:
115
                msg = "Not all input ids are valid.  The following are invalid: "
116
                for id_list, valid_list in zip([control_sample_ids, experiment_sample_ids], [valid_controls, valid_experiments]):
117
                    msg += ", ".join([id_list[i] for i, valid in enumerate(valid_list) if not valid])
118
119
120
121
        else:
            msg = "Specified output_file %s does not exist." % (output_file,)
        return (False, msg, None)

122
123
124
125
126
127
128
    def save_bam(self, bam_file, control_sample_ids, experiment_sample_ids, additional_data = {}):
        # Create result entry for bam files.  Since bam is a binary format, the file will only
        # be stored in GridFS
        valid, msg, result_id = self.create_result(bam_file, control_sample_ids, experiment_sample_ids, "bam", additional_data, gfs_attributes = {"file_type": "bam"})
        return (valid, msg, result_id)


129
    def save_bed(self, bed_file, control_sample_ids, experiment_sample_ids, additional_data = {}):
130
        # Create result_entry for bed_file
131
        valid, msg, result_id = self.create_result(bed_file, control_sample_ids, experiment_sample_ids, "bed", additional_data, gfs_attributes = {"file_type": "bed"})
132
133
134
135
136
        if valid:
            # Now we load the actual bed data into the bed collection.
            # Data is in a six column format
            # chr, start, end, name, score, strand
            # Load data using a list comprehension over lines,
137
138
139
            # then insert with insert_one()
            # Each document contains "n_lines" number of lines from the
            # result BED file.
140
            print "loading bed_data..."
141
            with open(bed_file, "r") as rh:
142
                msg = "Bed file successfully inserted."
143
144
                # Lazy load files in specified line chunk size
                n_lines = chipathlon.conf.result_lines_per_document
145
146
147
                line_set = list(itertools.islice(rh, n_lines))
                while line_set:
                    try:
148
149
150
151
                        result_lines = []
                        for line in line_set:
                            line_info = line.split()
                            line_record =  {
152
153
154
155
156
                                "chr": line_info[0],
                                "start": line_info[1],
                                "end": line_info[2],
                                "name": line_info[3],
                                "score": line_info[4],
157
                                "strand": line_info[5],
158
                            }
159
160
161
162
                            result_lines.append(line_record)

                        self.db.bed.insert_one({"result_id": result_id, "result_lines": result_lines})

163
164
165
166
167
                    except pymongo.errors.OperationFailure as e:
                        valid = False
                        msg = "Error inserting bed_file %s: %s" % (bed_file, e)
                    line_set = list(itertools.islice(rh, n_lines))
        return (valid, msg, result_id)
168

169
    def save_peak(self, peak_file, control_sample_ids, experiment_sample_ids, additional_data = {}):
170
        # Create result_entry for peak_file
171
        valid, msg, result_id = self.create_result(peak_file, control_sample_ids, experiment_sample_ids, "peak", additional_data, gfs_attributes = {"file_type": os.path.splitext(peak_file)[1][1:]})
172
173
174
175
        if valid:
            # Now we load the actual peak data into the collection
            # Data is in a 10 column format
            # chr, start, end, name, score, strand, signal_value, p_value, q_value, summit
176
177
            # Each document contains "n_lines" number of lines from the
            # result peak file.
178
            with open(peak_file, "r") as rh:
179
                msg = "Peak file successfully inserted."
180
181
                # Lazy load files in specified line chunk size
                n_lines = chipathlon.conf.result_lines_per_document
182
183
184
                line_set = list(itertools.islice(rh, n_lines))
                while line_set:
                    try:
185
186
187
188
                        result_lines = []
                        for line in line_set:
                            line_info = line.split()
                            line_record =  {
189
190
191
192
193
194
195
196
197
198
199
                                "chr": line_info[0],
                                "start": line_info[1],
                                "end": line_info[2],
                                "name": line_info[3],
                                "score": line_info[4],
                                "strand": line_info[5],
                                "signal_value": line_info[6],
                                "p_value": line_info[7],
                                "q_value": line_info[8],
                                "summit": line_info[9]
                            }
200
201
202
203
                            result_lines.append(line_record)

                        self.db.peak.insert_one({"result_id": result_id, "result_lines": result_lines})

204
205
206
207
208
                    except pymongo.errors.OperationFailure as e:
                        valid = False
                        msg = "Error inserting peak_file %s: %s" % (peak_file, e)
                    line_set = list(itertools.islice(rh, n_lines))
        return (valid, msg, result_id)
209

210
211
212
213
214
215
216
217
218
219
220
    def is_valid_sample(self, sample_accession):
        try:
            cursor = self.db.samples.find({
                "accession": sample_accession
            })
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with sample_accession %s: %s" % (sample_accession, e)
        return False

221
222
223
224
225
226
227
228
229
230
231
232
    def is_valid_experiment(self, experiment_id):
        try:
            cursor = self.db.experiments.find({
                "target": {"$exists": True},
                "@id": "/experiments/%s/" % (experiment_id,)
            })
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with experiment_id %s: %s" % (experiment_id, e)
        return False

233
234
235
236
237
238
239
240
241
242
243
244
    def check_valid_samples(self):
        cursor = self.db.experiments.aggregate([
            {
                "$match": {
                    "target": {"$exists": True},
                    "revoked_files.0": {"$exists": False},
                    "assembly.0": {"$exists": True},
                    "assembly.1": {"$exists": False}
                }
            },
            {
                "$lookup": {
245
                    "from": "samples",
246
                    "localField": "uuid",
247
248
249
250
251
252
253
254
255
256
257
258
259
                    "foreignField": "experiment_id",
                    "as": "samples"
                }
            }
        ])
        total = 0
        has_samples = 0
        for document in cursor:
            total += 1
            if len(document["samples"]) > 0:
                has_samples += 1
        return (has_samples, total)

260
261
262
263
264
265
266
267
268
269
270
271
272
    def get_assembly(self, experiment_id):
        valid = True
        msg = ""
        data = ""
        cursor = self.db.experiments.find({
            "target": {"$exists": True},
            "assembly.0": {"$exists": True},
            "assembly.1": {"$exists": False},
            "@id": "/experiments/%s/" % (experiment_id,)
        })
        if cursor.count() == 1:
            document = cursor.next()
            data = document["assembly"][0]
aknecht2's avatar
aknecht2 committed
273
            msg = "Succesfully retrieved assembly for experiment with id '%s'.\n" % (experiment_id,)
274
275
        else:
            valid = False
aknecht2's avatar
aknecht2 committed
276
            msg = "Experiment with id '%s' does not exist.\n" % (experiment_id,)
277
278
        return (valid, msg, data)

Adam Caprez's avatar
Adam Caprez committed
279
    def fetch_from_gridfs(self, gridfs_id, filename, checkmd5=True):
280
281
282
283
284
285
286
287
        """
        :param gridfs_id: GridFS _id of file to get.
        :type gridfs_id: bson.objectid.ObjectId
        :param filename: Filename to save file to.
        :type filename: str

        Fetch the file with _id 'gridfs_id' from GridFS and save to the file 'filename'.
        """
288
289
290
291
292
293
294
295

        try:
            gridfs_file = self.gfs.get(gridfs_id)
            gridfs_md5 = gridfs_file.md5
        except gridfs.errors.NoFile as e:
            print "Error fetching file from GridFS!\nNo file with ID '%s'" % (gridfs_id)
            print e
            sys.exit(1)
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

        try:
            output_fh = open(filename,'wb')
        except IOError as e:
            print "Error creating GridFS output file '%s':" % (filename)
            print (e.errno,e.strerror)
            sys.exit(1)

        hash_md5 = hashlib.md5()
        for chunk in gridfs_file:
            output_fh.write(chunk)
            hash_md5.update(chunk)

        output_fh.close()
        gridfs_file.close()

Adam Caprez's avatar
Adam Caprez committed
312
313
314
315
316
317
        if checkmd5:
            if gridfs_md5 == hash_md5.hexdigest():
                return True
            else:
                print "MD5 mismatch saving file from GridFS to '%s'" % (filename)
                return False
318
        else:
Adam Caprez's avatar
Adam Caprez committed
319
            return True
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    def get_sample(self, accession, file_type):
        """
        :param accession: The accession number of the target sample
        :type accession: string
        :param file_type: The file type of the target sample should be [fastq|bam]
        :type file_type: string

        Gets the associated sample based on accession number and file_type
        """
        valid = True
        msg = ""
        data = {}
        cursor = self.db.samples.find({
            "accession": accession,
            "file_type": file_type
        })
        if cursor.count() == 1:
            data = cursor.next()
        else:
            valid = False
            msg = "Found %s files with accession: %s, file_type: %s. Should only be 1." % (
                cursor.count(),
                accession,
                file_type
            )
        return (valid, msg, data)

348
    def get_samples(self, experiment_id, file_type):
349
350
351
        valid = True
        msg = ""
        data = {}
352
353
354
355
        # First, check to make sure the target experiment is valid
        if self.is_valid_experiment(experiment_id):
            # Next, we check that there is a least 1 possible control
            check3 = self.db.experiments.find({
356
                "target": {"$exists": True},
357
358
359
                "assembly.0": {"$exists": True},
                "assembly.1": {"$exists": False},
                "possible_controls.0": {"$exists": True},
360
361
                "@id": "/experiments/%s/" % (experiment_id,)
            })
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
            if check3.count() == 1:
                # Complicated aggregtaion pipeline does the following steps:
                # 1. Find the experiment that matches the given id
                # 2. Join samples into the collection by exp_id
                # 3. Iterate through possible_controls
                # 4. Join possible_control data into control_exps
                # 5. Iterate through control_exps
                # 6. Join samples into the control_exps by exp_id
                # 7. Re-aggregate all data into arrays
                pipeline = [
                    {
                        "$match": {
                            "target": {"$exists": True},
                            "assembly.0": {"$exists": True},
                            "assembly.1": {"$exists": False},
                            "possible_controls.0": {"$exists": True},
                            "@id": "/experiments/%s/" % (experiment_id,)
379
                        }
380
381
382
383
384
385
386
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "uuid",
                            "foreignField": "experiment_id",
                            "as": "samples"
387
                        }
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
                    },
                    {
                        "$unwind": "$possible_controls"
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "possible_controls.uuid",
                            "foreignField": "experiment_id",
                            "as": "possible_controls.samples"
                        }
                    },
                    {
                        "$group": {
                            "_id": "$_id",
                            "possible_controls": {"$push": "$possible_controls"},
                            "samples": {"$push": "$samples"}
                        }
                    }
                ]
                cursor = self.db.experiments.aggregate(pipeline)
                # We should have only 1 document
                document = cursor.next()
411
                control_inputs = [sample for control in document["possible_controls"] for sample in control["samples"] if ("file_type" in sample and sample["file_type"] == file_type)]
412
413
                signal_inputs = [sample for sample in document["samples"][0] if ("file_type" in sample and sample["file_type"] == file_type)]
                if (len(control_inputs) > 0 and len(signal_inputs) > 0):
414
415
416
                    msg = "Succesfully retrieved input files for experiment with id '%s'.\n" % (experiment_id,)
                    data = {
                        "control": control_inputs,
417
                        "signal": signal_inputs
418
                    }
419
420
                else:
                    valid = False
421
                    msg = "Experiment with id '%s' has %s possible control inputs, and %s possible experiment inputs.\n" % (experiment_id, len(control_inputs), len(experiment_inputs))
422
423
            else:
                valid = False
424
                msg = "Experiment with id '%s' does not have possible_controls.\n" % (experiment_id,)
425
426
        else:
            valid = False
427
            msg = "Experiment with id '%s' is not valid!  It may not exist, or it may be missing required metadata.\n" % (experiment_id,)
428
        return (valid, msg, data)