db.py 13.7 KB
Newer Older
aknecht2's avatar
aknecht2 committed
1
from pymongo import MongoClient
2
import pymongo.errors
3
4
5
import gridfs
import sys
import traceback
6
import os
7
import itertools
8
from pprint import pprint
aknecht2's avatar
aknecht2 committed
9

10

11
12
13
class MongoDB(object):

    def __init__(self, host, username, password):
14
15
        self.client = MongoClient(host)
        self.db = self.client.chipseq
16
        try:
17
            self.db.authenticate(username, password, mechanism="SCRAM-SHA-1")
18
19
20
21
22
23
24
        except:
            print("Could not authenticate to db %s!" % (host,))
            print traceback.format_exc()
            sys.exit(1)
        self.gfs = gridfs.GridFS(self.db)
        return

25
26
27
28
29
30
31
32
33
34
35
36
    def delete_result(self, result_id):
        # Make sure result exists
        cursor = self.db.results.find({
            "_id": result_id
        })
        if cursor.count() == 1:
            result = cursor.next()
            self.gfs.delete(result["gridfs_id"])
            self.db[result["result_type"]].delete_many({"result_id": result["_id"]})
            self.db.results.delete_one({"_id": result["_id"]})
        else:
            print "result_id %s doesn't exist." % (result_id,)
37
38
        return

39
40
41
42
    def create_result(self, output_file, control_ids, experiment_ids, result_type, additional_data = {}, gfs_attributes = {}):
        # Make sure output_file exists
        if os.path.isfile(output_file):
            # Make sure that all control_ids & experiment_ids are valid
43
44
45
            # REMEMBER, these are ids for control & experiment SAMPLES
            valid_controls = [self.is_valid_sample(cid) for cid in control_ids]
            valid_experiments = [self.is_valid_sample(eid) for eid in experiment_ids]
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
            if all(valid_controls) and all(valid_experiments):
                # First, we load the output file into gfs
                with open(output_file, "r") as rh:
                    # Calling put returns the gfs id
                    gridfs_id = self.gfs.put(rh, filename=os.path.basename(output_file), **gfs_attributes)
                # Now, we create the actual result entry by combining all necessary info
                result_entry = {
                    "gridfs_id": gridfs_id,
                    "control_ids": control_ids,
                    "experiment_ids": experiment_ids,
                    "result_type": result_type
                }
                # Add additional attributes into the result_entry
                result_entry.update(additional_data)
                # Insert the entry into the database, and return the id
                result = self.db.results.insert_one(result_entry)
                return (True, "Result created successfully.", result.inserted_id)
            else:
64
                msg = "Not all input ids are valid.  The following are invalid: "
65
                for id_list, valid_list in zip([control_ids, experiment_ids], [valid_controls, valid_experiments]):
66
                    msg += ", ".join([id_list[i] for i, valid in enumerate(valid_list) if not valid])
67
68
69
70
71
72
73
74
75
76
77
78
        else:
            msg = "Specified output_file %s does not exist." % (output_file,)
        return (False, msg, None)

    def save_bed(self, bed_file, control_ids, experiment_ids, additional_data = {}):
        # Create result_entry for bed_file
        valid, msg, result_id = self.create_result(bed_file, control_ids, experiment_ids, "bed", additional_data, gfs_attributes = {"file_type": "bed"})
        if valid:
            # Now we load the actual bed data into the bed collection.
            # Data is in a six column format
            # chr, start, end, name, score, strand
            # Load data using a list comprehension over lines,
79
80
81
            # then insert with insert_one()
            # Each document contains "n_lines" number of lines from the
            # result BED file.
82
            print "loading bed_data..."
83
            with open(bed_file, "r") as rh:
84
85
86
87
88
89
                msg = "Bed file successfully inserted."
                # Lazy load files in specified line chunk size ~100k lines
                n_lines = 100000
                line_set = list(itertools.islice(rh, n_lines))
                while line_set:
                    try:
90
91
92
93
                        result_lines = []
                        for line in line_set:
                            line_info = line.split()
                            line_record =  {
94
95
96
97
98
                                "chr": line_info[0],
                                "start": line_info[1],
                                "end": line_info[2],
                                "name": line_info[3],
                                "score": line_info[4],
99
                                "strand": line_info[5],
100
                            }
101
102
103
104
                            result_lines.append(line_record)

                        self.db.bed.insert_one({"result_id": result_id, "result_lines": result_lines})

105
106
107
108
109
                    except pymongo.errors.OperationFailure as e:
                        valid = False
                        msg = "Error inserting bed_file %s: %s" % (bed_file, e)
                    line_set = list(itertools.islice(rh, n_lines))
        return (valid, msg, result_id)
110
111
112
113
114
115
116
117

    def save_peak(self, peak_file, control_ids, experiment_ids, additional_data = {}):
        # Create result_entry for peak_file
        valid, msg, result_id = self.create_result(peak_file, control_ids, experiment_ids, "peak", additional_data, gfs_attributes = {"file_type": os.path.splitext(peak_file)[1][1:]})
        if valid:
            # Now we load the actual peak data into the collection
            # Data is in a 10 column format
            # chr, start, end, name, score, strand, signal_value, p_value, q_value, summit
118
119
            # Each document contains "n_lines" number of lines from the
            # result peak file.
120
            with open(peak_file, "r") as rh:
121
122
123
124
125
126
                msg = "Peak file successfully inserted."
                # Lazy load files in specified line chunk size ~100k lines
                n_lines = 10000
                line_set = list(itertools.islice(rh, n_lines))
                while line_set:
                    try:
127
128
129
130
                        result_lines = []
                        for line in line_set:
                            line_info = line.split()
                            line_record =  {
131
132
133
134
135
136
137
138
139
140
141
                                "chr": line_info[0],
                                "start": line_info[1],
                                "end": line_info[2],
                                "name": line_info[3],
                                "score": line_info[4],
                                "strand": line_info[5],
                                "signal_value": line_info[6],
                                "p_value": line_info[7],
                                "q_value": line_info[8],
                                "summit": line_info[9]
                            }
142
143
144
145
                            result_lines.append(line_record)

                        self.db.peak.insert_one({"result_id": result_id, "result_lines": result_lines})

146
147
148
149
150
                    except pymongo.errors.OperationFailure as e:
                        valid = False
                        msg = "Error inserting peak_file %s: %s" % (peak_file, e)
                    line_set = list(itertools.islice(rh, n_lines))
        return (valid, msg, result_id)
151

152
153
154
155
156
157
158
159
160
161
162
    def is_valid_sample(self, sample_accession):
        try:
            cursor = self.db.samples.find({
                "accession": sample_accession
            })
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with sample_accession %s: %s" % (sample_accession, e)
        return False

163
164
165
166
167
168
169
170
171
172
173
174
175
    def is_valid_experiment(self, experiment_id):
        try:
            cursor = self.db.experiments.find({
                "target": {"$exists": True},
                "revoked_files.0": {"$exists": False},
                "@id": "/experiments/%s/" % (experiment_id,)
            })
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with experiment_id %s: %s" % (experiment_id, e)
        return False

176
177
178
179
180
181
182
183
184
185
186
187
    def check_valid_samples(self):
        cursor = self.db.experiments.aggregate([
            {
                "$match": {
                    "target": {"$exists": True},
                    "revoked_files.0": {"$exists": False},
                    "assembly.0": {"$exists": True},
                    "assembly.1": {"$exists": False}
                }
            },
            {
                "$lookup": {
188
                    "from": "samples",
189
                    "localField": "uuid",
190
191
192
193
194
195
196
197
198
199
200
201
202
                    "foreignField": "experiment_id",
                    "as": "samples"
                }
            }
        ])
        total = 0
        has_samples = 0
        for document in cursor:
            total += 1
            if len(document["samples"]) > 0:
                has_samples += 1
        return (has_samples, total)

203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def get_assembly(self, experiment_id):
        valid = True
        msg = ""
        data = ""
        cursor = self.db.experiments.find({
            "target": {"$exists": True},
            "revoked_files.0": {"$exists": False},
            "assembly.0": {"$exists": True},
            "assembly.1": {"$exists": False},
            "@id": "/experiments/%s/" % (experiment_id,)
        })
        if cursor.count() == 1:
            document = cursor.next()
            data = document["assembly"][0]
aknecht2's avatar
aknecht2 committed
217
            msg = "Succesfully retrieved assembly for experiment with id '%s'.\n" % (experiment_id,)
218
219
        else:
            valid = False
aknecht2's avatar
aknecht2 committed
220
            msg = "Experiment with id '%s' does not exist.\n" % (experiment_id,)
221
222
        return (valid, msg, data)

223
224
225
226
    def get_samples(self, experiment_id):
        valid = True
        msg = ""
        data = {}
227
228
229
230
        # First, check to make sure the target experiment is valid
        if self.is_valid_experiment(experiment_id):
            # Next, we check that there is a least 1 possible control
            check3 = self.db.experiments.find({
231
232
                "target": {"$exists": True},
                "revoked_files.0": {"$exists": False},
233
234
235
                "assembly.0": {"$exists": True},
                "assembly.1": {"$exists": False},
                "possible_controls.0": {"$exists": True},
236
237
                "@id": "/experiments/%s/" % (experiment_id,)
            })
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
            if check3.count() == 1:
                # Complicated aggregtaion pipeline does the following steps:
                # 1. Find the experiment that matches the given id
                # 2. Join samples into the collection by exp_id
                # 3. Iterate through possible_controls
                # 4. Join possible_control data into control_exps
                # 5. Iterate through control_exps
                # 6. Join samples into the control_exps by exp_id
                # 7. Re-aggregate all data into arrays
                pipeline = [
                    {
                        "$match": {
                            "target": {"$exists": True},
                            "revoked_files.0": {"$exists": False},
                            "assembly.0": {"$exists": True},
                            "assembly.1": {"$exists": False},
                            "possible_controls.0": {"$exists": True},
                            "@id": "/experiments/%s/" % (experiment_id,)
256
                        }
257
258
259
260
261
262
263
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "uuid",
                            "foreignField": "experiment_id",
                            "as": "samples"
264
                        }
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
                    },
                    {
                        "$unwind": "$possible_controls"
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "possible_controls.uuid",
                            "foreignField": "experiment_id",
                            "as": "possible_controls.samples"
                        }
                    },
                    {
                        "$group": {
                            "_id": "$_id",
                            "possible_controls": {"$push": "$possible_controls"},
                            "samples": {"$push": "$samples"}
                        }
                    }
                ]
                cursor = self.db.experiments.aggregate(pipeline)
                # We should have only 1 document
                document = cursor.next()
                control_inputs = [sample for control in document["possible_controls"] for sample in control["samples"] if ("file_type" in sample and sample["file_type"] == "fastq")]
                experiment_inputs = [sample for sample in document["samples"][0] if ("file_type" in sample and sample["file_type"] == "fastq")]
                if (len(control_inputs) > 0 and len(experiment_inputs) > 0):
                    msg = "Succesfully retrieved input files for experiment with id '%s'.\n" % (experiment_id,)
                    data = {
                        "control": control_inputs,
                        "experiment": experiment_inputs
                    }
296
297
                else:
                    valid = False
298
                    msg = "Experiment with id '%s' has %s possible control inputs, and %s possible experiment inputs.\n" % (experiment_id, len(control_inputs), len(experiment_inputs))
299
300
            else:
                valid = False
301
                msg = "Experiment with id '%s' does not have possible_controls.\n" % (experiment_id,)
302
303
        else:
            valid = False
304
            msg = "Experiment with id '%s' is not valid!  It may not exist, or it may be missing required metadata.\n" % (experiment_id,)
305
        return (valid, msg, data)