db.py 18.5 KB
Newer Older
aknecht2's avatar
aknecht2 committed
1
from pymongo import MongoClient
2
import pymongo.errors
3
4
5
import gridfs
import sys
import traceback
6
import os
7
import itertools
8
import time
9
import chipathlon.conf
10
from pprint import pprint
11
import hashlib
aknecht2's avatar
aknecht2 committed
12

13

14
15
16
class MongoDB(object):

    def __init__(self, host, username, password):
17
18
19
        self.host = host
        self.username = username
        self.password = password
20
21
        self.client = MongoClient(host)
        self.db = self.client.chipseq
22
        try:
23
            self.db.authenticate(username, password, mechanism="SCRAM-SHA-1")
24
25
26
27
28
29
30
        except:
            print("Could not authenticate to db %s!" % (host,))
            print traceback.format_exc()
            sys.exit(1)
        self.gfs = gridfs.GridFS(self.db)
        return

31
32
33
34
35
36
37
38
39
40
41
42
    def delete_result(self, result_id):
        # Make sure result exists
        cursor = self.db.results.find({
            "_id": result_id
        })
        if cursor.count() == 1:
            result = cursor.next()
            self.gfs.delete(result["gridfs_id"])
            self.db[result["result_type"]].delete_many({"result_id": result["_id"]})
            self.db.results.delete_one({"_id": result["_id"]})
        else:
            print "result_id %s doesn't exist." % (result_id,)
43
44
        return

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    def _get_result_query(self, result, genome):
        query = {
            "result_type": result.file_type,
            "assembly": genome.assembly,
            "timestamp": {"$exists": True},
            "file_name": result.full_name
        }
        # In the case that there are 0 samples we just want to check for existence.
        control_sample_accessions = result.get_accessions("control")
        signal_sample_accessions = result.get_accessions("signal")
        query["control_sample_accessions"] = {"$all": control_sample_accessions} if (len(control_sample_accessions) > 0) else {"$exists": True}
        query["signal_sample_accessions"] = {"$all": signal_sample_accessions} if (len(signal_sample_accessions) > 0) else {"$exists": True}
        for job in result.all_jobs:
            job_args = job.get_db_arguments()
            arg_keys = job_args.keys()
            if len(arg_keys) == 0:
                query[job.job_name] = {"$exists": True}
            else:
                for arg_name in arg_keys:
                    query[job.job_name + "." + arg_name] = job_args[arg_name]
        return query

    def result_exists(self, result, genome):
        try:
            cursor = self.db.results.find(self._get_result_query(result, genome))
            return cursor.count() > 0
        except pymongo.errors.OperationFailure as e:
            print "Error checking result [%s]: %s" % (file_name, e)
        return False


    def get_result(self, result, genome):
77
        try:
78
            cursor = self.db.results.find(self._get_result_query(result, genome))
79
80
            if cursor.count() > 0:
                return cursor.sort("timestamp", pymongo.DESCENDING).next()
81
        except pymongo.errors.OperationFailure as e:
82
            print "Error checking result [%s]: %s" % (file_name, e)
83
        return None
84

85
    def create_result(self, output_file, control_sample_ids, experiment_sample_ids, result_type, additional_data = {}, gfs_attributes = {}):
86
87
        # Make sure output_file exists
        if os.path.isfile(output_file):
88
            # Make sure that all control_sample_ids & experiment_sample_ids are valid
89
            # REMEMBER, these are ids for control & experiment SAMPLES
90
91
            valid_controls = [self.is_valid_sample(cid) for cid in control_sample_ids]
            valid_experiments = [self.is_valid_sample(eid) for eid in experiment_sample_ids]
92
93
94
95
96
97
98
99
            if all(valid_controls) and all(valid_experiments):
                # First, we load the output file into gfs
                with open(output_file, "r") as rh:
                    # Calling put returns the gfs id
                    gridfs_id = self.gfs.put(rh, filename=os.path.basename(output_file), **gfs_attributes)
                # Now, we create the actual result entry by combining all necessary info
                result_entry = {
                    "gridfs_id": gridfs_id,
100
101
                    "control_sample_ids": control_sample_ids,
                    "experiment_sample_ids": experiment_sample_ids,
102
103
104
                    "result_type": result_type,
                    "file_name": output_file,
                    "timestamp": time.time()
105
106
107
108
109
110
111
                }
                # Add additional attributes into the result_entry
                result_entry.update(additional_data)
                # Insert the entry into the database, and return the id
                result = self.db.results.insert_one(result_entry)
                return (True, "Result created successfully.", result.inserted_id)
            else:
112
                msg = "Not all input ids are valid.  The following are invalid: "
113
                for id_list, valid_list in zip([control_sample_ids, experiment_sample_ids], [valid_controls, valid_experiments]):
114
                    msg += ", ".join([id_list[i] for i, valid in enumerate(valid_list) if not valid])
115
116
117
118
        else:
            msg = "Specified output_file %s does not exist." % (output_file,)
        return (False, msg, None)

119
120
121
122
123
124
125
    def save_bam(self, bam_file, control_sample_ids, experiment_sample_ids, additional_data = {}):
        # Create result entry for bam files.  Since bam is a binary format, the file will only
        # be stored in GridFS
        valid, msg, result_id = self.create_result(bam_file, control_sample_ids, experiment_sample_ids, "bam", additional_data, gfs_attributes = {"file_type": "bam"})
        return (valid, msg, result_id)


126
    def save_bed(self, bed_file, control_sample_ids, experiment_sample_ids, additional_data = {}):
127
        # Create result_entry for bed_file
128
        valid, msg, result_id = self.create_result(bed_file, control_sample_ids, experiment_sample_ids, "bed", additional_data, gfs_attributes = {"file_type": "bed"})
129
130
131
132
133
        if valid:
            # Now we load the actual bed data into the bed collection.
            # Data is in a six column format
            # chr, start, end, name, score, strand
            # Load data using a list comprehension over lines,
134
135
136
            # then insert with insert_one()
            # Each document contains "n_lines" number of lines from the
            # result BED file.
137
            print "loading bed_data..."
138
            with open(bed_file, "r") as rh:
139
                msg = "Bed file successfully inserted."
140
141
                # Lazy load files in specified line chunk size
                n_lines = chipathlon.conf.result_lines_per_document
142
143
144
                line_set = list(itertools.islice(rh, n_lines))
                while line_set:
                    try:
145
146
147
148
                        result_lines = []
                        for line in line_set:
                            line_info = line.split()
                            line_record =  {
149
150
151
152
153
                                "chr": line_info[0],
                                "start": line_info[1],
                                "end": line_info[2],
                                "name": line_info[3],
                                "score": line_info[4],
154
                                "strand": line_info[5],
155
                            }
156
157
158
159
                            result_lines.append(line_record)

                        self.db.bed.insert_one({"result_id": result_id, "result_lines": result_lines})

160
161
162
163
164
                    except pymongo.errors.OperationFailure as e:
                        valid = False
                        msg = "Error inserting bed_file %s: %s" % (bed_file, e)
                    line_set = list(itertools.islice(rh, n_lines))
        return (valid, msg, result_id)
165

166
    def save_peak(self, peak_file, control_sample_ids, experiment_sample_ids, additional_data = {}):
167
        # Create result_entry for peak_file
168
        valid, msg, result_id = self.create_result(peak_file, control_sample_ids, experiment_sample_ids, "peak", additional_data, gfs_attributes = {"file_type": os.path.splitext(peak_file)[1][1:]})
169
170
171
172
        if valid:
            # Now we load the actual peak data into the collection
            # Data is in a 10 column format
            # chr, start, end, name, score, strand, signal_value, p_value, q_value, summit
173
174
            # Each document contains "n_lines" number of lines from the
            # result peak file.
175
            with open(peak_file, "r") as rh:
176
                msg = "Peak file successfully inserted."
177
178
                # Lazy load files in specified line chunk size
                n_lines = chipathlon.conf.result_lines_per_document
179
180
181
                line_set = list(itertools.islice(rh, n_lines))
                while line_set:
                    try:
182
183
184
185
                        result_lines = []
                        for line in line_set:
                            line_info = line.split()
                            line_record =  {
186
187
188
189
190
191
192
193
194
195
196
                                "chr": line_info[0],
                                "start": line_info[1],
                                "end": line_info[2],
                                "name": line_info[3],
                                "score": line_info[4],
                                "strand": line_info[5],
                                "signal_value": line_info[6],
                                "p_value": line_info[7],
                                "q_value": line_info[8],
                                "summit": line_info[9]
                            }
197
198
199
200
                            result_lines.append(line_record)

                        self.db.peak.insert_one({"result_id": result_id, "result_lines": result_lines})

201
202
203
204
205
                    except pymongo.errors.OperationFailure as e:
                        valid = False
                        msg = "Error inserting peak_file %s: %s" % (peak_file, e)
                    line_set = list(itertools.islice(rh, n_lines))
        return (valid, msg, result_id)
206

207
208
209
210
211
212
213
214
215
216
217
    def is_valid_sample(self, sample_accession):
        try:
            cursor = self.db.samples.find({
                "accession": sample_accession
            })
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with sample_accession %s: %s" % (sample_accession, e)
        return False

218
219
220
221
222
223
224
225
226
227
228
229
230
    def is_valid_experiment(self, experiment_id):
        try:
            cursor = self.db.experiments.find({
                "target": {"$exists": True},
                "revoked_files.0": {"$exists": False},
                "@id": "/experiments/%s/" % (experiment_id,)
            })
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with experiment_id %s: %s" % (experiment_id, e)
        return False

231
232
233
234
235
236
237
238
239
240
241
242
    def check_valid_samples(self):
        cursor = self.db.experiments.aggregate([
            {
                "$match": {
                    "target": {"$exists": True},
                    "revoked_files.0": {"$exists": False},
                    "assembly.0": {"$exists": True},
                    "assembly.1": {"$exists": False}
                }
            },
            {
                "$lookup": {
243
                    "from": "samples",
244
                    "localField": "uuid",
245
246
247
248
249
250
251
252
253
254
255
256
257
                    "foreignField": "experiment_id",
                    "as": "samples"
                }
            }
        ])
        total = 0
        has_samples = 0
        for document in cursor:
            total += 1
            if len(document["samples"]) > 0:
                has_samples += 1
        return (has_samples, total)

258
259
260
261
262
263
264
265
266
267
268
269
270
271
    def get_assembly(self, experiment_id):
        valid = True
        msg = ""
        data = ""
        cursor = self.db.experiments.find({
            "target": {"$exists": True},
            "revoked_files.0": {"$exists": False},
            "assembly.0": {"$exists": True},
            "assembly.1": {"$exists": False},
            "@id": "/experiments/%s/" % (experiment_id,)
        })
        if cursor.count() == 1:
            document = cursor.next()
            data = document["assembly"][0]
aknecht2's avatar
aknecht2 committed
272
            msg = "Succesfully retrieved assembly for experiment with id '%s'.\n" % (experiment_id,)
273
274
        else:
            valid = False
aknecht2's avatar
aknecht2 committed
275
            msg = "Experiment with id '%s' does not exist.\n" % (experiment_id,)
276
277
        return (valid, msg, data)

Adam Caprez's avatar
Adam Caprez committed
278
    def fetch_from_gridfs(self, gridfs_id, filename, checkmd5=True):
279
280
281
282
283
284
285
286
        """
        :param gridfs_id: GridFS _id of file to get.
        :type gridfs_id: bson.objectid.ObjectId
        :param filename: Filename to save file to.
        :type filename: str

        Fetch the file with _id 'gridfs_id' from GridFS and save to the file 'filename'.
        """
287
288
289
290
291
292
293
294

        try:
            gridfs_file = self.gfs.get(gridfs_id)
            gridfs_md5 = gridfs_file.md5
        except gridfs.errors.NoFile as e:
            print "Error fetching file from GridFS!\nNo file with ID '%s'" % (gridfs_id)
            print e
            sys.exit(1)
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

        try:
            output_fh = open(filename,'wb')
        except IOError as e:
            print "Error creating GridFS output file '%s':" % (filename)
            print (e.errno,e.strerror)
            sys.exit(1)

        hash_md5 = hashlib.md5()
        for chunk in gridfs_file:
            output_fh.write(chunk)
            hash_md5.update(chunk)

        output_fh.close()
        gridfs_file.close()

Adam Caprez's avatar
Adam Caprez committed
311
312
313
314
315
316
        if checkmd5:
            if gridfs_md5 == hash_md5.hexdigest():
                return True
            else:
                print "MD5 mismatch saving file from GridFS to '%s'" % (filename)
                return False
317
        else:
Adam Caprez's avatar
Adam Caprez committed
318
            return True
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    def get_sample(self, accession, file_type):
        """
        :param accession: The accession number of the target sample
        :type accession: string
        :param file_type: The file type of the target sample should be [fastq|bam]
        :type file_type: string

        Gets the associated sample based on accession number and file_type
        """
        valid = True
        msg = ""
        data = {}
        cursor = self.db.samples.find({
            "accession": accession,
            "file_type": file_type
        })
        if cursor.count() == 1:
            data = cursor.next()
        else:
            valid = False
            msg = "Found %s files with accession: %s, file_type: %s. Should only be 1." % (
                cursor.count(),
                accession,
                file_type
            )
        return (valid, msg, data)

347
    def get_samples(self, experiment_id, file_type):
348
349
350
        valid = True
        msg = ""
        data = {}
351
352
353
354
        # First, check to make sure the target experiment is valid
        if self.is_valid_experiment(experiment_id):
            # Next, we check that there is a least 1 possible control
            check3 = self.db.experiments.find({
355
356
                "target": {"$exists": True},
                "revoked_files.0": {"$exists": False},
357
358
359
                "assembly.0": {"$exists": True},
                "assembly.1": {"$exists": False},
                "possible_controls.0": {"$exists": True},
360
361
                "@id": "/experiments/%s/" % (experiment_id,)
            })
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
            if check3.count() == 1:
                # Complicated aggregtaion pipeline does the following steps:
                # 1. Find the experiment that matches the given id
                # 2. Join samples into the collection by exp_id
                # 3. Iterate through possible_controls
                # 4. Join possible_control data into control_exps
                # 5. Iterate through control_exps
                # 6. Join samples into the control_exps by exp_id
                # 7. Re-aggregate all data into arrays
                pipeline = [
                    {
                        "$match": {
                            "target": {"$exists": True},
                            "revoked_files.0": {"$exists": False},
                            "assembly.0": {"$exists": True},
                            "assembly.1": {"$exists": False},
                            "possible_controls.0": {"$exists": True},
                            "@id": "/experiments/%s/" % (experiment_id,)
380
                        }
381
382
383
384
385
386
387
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "uuid",
                            "foreignField": "experiment_id",
                            "as": "samples"
388
                        }
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
                    },
                    {
                        "$unwind": "$possible_controls"
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "possible_controls.uuid",
                            "foreignField": "experiment_id",
                            "as": "possible_controls.samples"
                        }
                    },
                    {
                        "$group": {
                            "_id": "$_id",
                            "possible_controls": {"$push": "$possible_controls"},
                            "samples": {"$push": "$samples"}
                        }
                    }
                ]
                cursor = self.db.experiments.aggregate(pipeline)
                # We should have only 1 document
                document = cursor.next()
412
413
                control_inputs = [sample for control in document["possible_controls"] for sample in control["samples"] if ("file_type" in sample and sample["file_type"] == file_type)]
                experiment_inputs = [sample for sample in document["samples"][0] if ("file_type" in sample and sample["file_type"] == file_type)]
414
415
416
417
418
419
                if (len(control_inputs) > 0 and len(experiment_inputs) > 0):
                    msg = "Succesfully retrieved input files for experiment with id '%s'.\n" % (experiment_id,)
                    data = {
                        "control": control_inputs,
                        "experiment": experiment_inputs
                    }
420
421
                else:
                    valid = False
422
                    msg = "Experiment with id '%s' has %s possible control inputs, and %s possible experiment inputs.\n" % (experiment_id, len(control_inputs), len(experiment_inputs))
423
424
            else:
                valid = False
425
                msg = "Experiment with id '%s' does not have possible_controls.\n" % (experiment_id,)
426
427
        else:
            valid = False
428
            msg = "Experiment with id '%s' is not valid!  It may not exist, or it may be missing required metadata.\n" % (experiment_id,)
429
        return (valid, msg, data)