db.py 12.2 KB
Newer Older
aknecht2's avatar
aknecht2 committed
1
from pymongo import MongoClient
2
import pymongo.errors
3
4
5
import gridfs
import sys
import traceback
6
import os
7
from pprint import pprint
aknecht2's avatar
aknecht2 committed
8

9

10
11
12
class MongoDB(object):

    def __init__(self, host, username, password):
13
14
        self.client = MongoClient(host)
        self.db = self.client.chipseq
15
        try:
16
            self.db.authenticate(username, password, mechanism="SCRAM-SHA-1")
17
18
19
20
21
22
23
        except:
            print("Could not authenticate to db %s!" % (host,))
            print traceback.format_exc()
            sys.exit(1)
        self.gfs = gridfs.GridFS(self.db)
        return

24
25
26
27
28
29
30
31
32
33
34
35
    def delete_result(self, result_id):
        # Make sure result exists
        cursor = self.db.results.find({
            "_id": result_id
        })
        if cursor.count() == 1:
            result = cursor.next()
            self.gfs.delete(result["gridfs_id"])
            self.db[result["result_type"]].delete_many({"result_id": result["_id"]})
            self.db.results.delete_one({"_id": result["_id"]})
        else:
            print "result_id %s doesn't exist." % (result_id,)
36
37
        return

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def create_result(self, output_file, control_ids, experiment_ids, result_type, additional_data = {}, gfs_attributes = {}):
        # Make sure output_file exists
        if os.path.isfile(output_file):
            # Make sure that all control_ids & experiment_ids are valid
            valid_controls = [self.is_valid_experiment(cid) for cid in control_ids]
            valid_experiments = [self.is_valid_experiment(eid) for eid in experiment_ids]
            if all(valid_controls) and all(valid_experiments):
                # First, we load the output file into gfs
                with open(output_file, "r") as rh:
                    # Calling put returns the gfs id
                    gridfs_id = self.gfs.put(rh, filename=os.path.basename(output_file), **gfs_attributes)
                # Now, we create the actual result entry by combining all necessary info
                result_entry = {
                    "gridfs_id": gridfs_id,
                    "control_ids": control_ids,
                    "experiment_ids": experiment_ids,
                    "result_type": result_type
                }
                # Add additional attributes into the result_entry
                result_entry.update(additional_data)
                # Insert the entry into the database, and return the id
                result = self.db.results.insert_one(result_entry)
                return (True, "Result created successfully.", result.inserted_id)
            else:
                msg = "Not all input ids are valid.  The following are invalid:"
                for id_list, valid_list in zip([control_ids, experiment_ids], [valid_controls, valid_experiments]):
                    for i, valid in enumerate(valid_list):
                        if not valid:
                            msg += id_list[i] + ", "
        else:
            msg = "Specified output_file %s does not exist." % (output_file,)
        return (False, msg, None)

    def save_bed(self, bed_file, control_ids, experiment_ids, additional_data = {}):
        # Create result_entry for bed_file
        valid, msg, result_id = self.create_result(bed_file, control_ids, experiment_ids, "bed", additional_data, gfs_attributes = {"file_type": "bed"})
        if valid:
            # Now we load the actual bed data into the bed collection.
            # Data is in a six column format
            # chr, start, end, name, score, strand
            # Load data using a list comprehension over lines,
            # then insert with insert_many()
            with open(bed_file, "r") as rh:
                bed_data = [
                    {
                        "result_id": result_id,
                        "chr": line_info[0],
                        "start": line_info[1],
                        "end": line_info[2],
                        "name": line_info[3],
                        "score": line_info[4],
                        "strand": line_info[5]
                    }
                    for line in rh.readlines()
                    for line_info in (line.split(),)
                ]
                try:
                    self.db.bed.insert_many(bed_data)
                    return (True, "Bed file successfully inserted.", result_id)
                except pymongo.errors.OperationFailure as e:
                    valid = False
                    msg = "Error inserting bed_file %s: %s" % (bed_file, e)
        return (valid, msg, None)

    def save_peak(self, peak_file, control_ids, experiment_ids, additional_data = {}):
        # Create result_entry for peak_file
        valid, msg, result_id = self.create_result(peak_file, control_ids, experiment_ids, "peak", additional_data, gfs_attributes = {"file_type": os.path.splitext(peak_file)[1][1:]})
        if valid:
            # Now we load the actual peak data into the collection
            # Data is in a 10 column format
            # chr, start, end, name, score, strand, signal_value, p_value, q_value, summit
            with open(peak_file, "r") as rh:
                peak_data = [
                    {
                        "result_id": result_id,
                        "chr": line_info[0],
                        "start": line_info[1],
                        "end": line_info[2],
                        "name": line_info[3],
                        "score": line_info[4],
                        "strand": line_info[5],
                        "signal_value": line_info[6],
                        "p_value": line_info[7],
                        "q_value": line_info[8],
                        "summit": line_info[9]
                    }
                    for line in rh.readlines()
                    for line_info in (line.split(),)
                ]
                try:
                    self.db.peak.insert_many(peak_data)
                    return (True, "Peak file successfully inserted.", result_id)
                except pymongo.errors.OperationFailure as e:
                    valid = False
                    msg = "Error inserting peak_file %s: %s" % (peak_file, e)
        return (valid, msg, None)

    def is_valid_experiment(self, experiment_id):
        try:
            cursor = self.db.experiments.find({
                "target": {"$exists": True},
                "revoked_files.0": {"$exists": False},
                "@id": "/experiments/%s/" % (experiment_id,)
            })
            if cursor.count() == 1:
                return True
        except pymongo.errors.OperationFailure as e:
            print "Error with experiment_id %s: %s" % (experiment_id, e)
        return False

148
149
150
151
152
153
154
155
156
157
158
159
    def check_valid_samples(self):
        cursor = self.db.experiments.aggregate([
            {
                "$match": {
                    "target": {"$exists": True},
                    "revoked_files.0": {"$exists": False},
                    "assembly.0": {"$exists": True},
                    "assembly.1": {"$exists": False}
                }
            },
            {
                "$lookup": {
160
                    "from": "samples",
161
                    "localField": "uuid",
162
163
164
165
166
167
168
169
170
171
172
173
174
                    "foreignField": "experiment_id",
                    "as": "samples"
                }
            }
        ])
        total = 0
        has_samples = 0
        for document in cursor:
            total += 1
            if len(document["samples"]) > 0:
                has_samples += 1
        return (has_samples, total)

175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def get_assembly(self, experiment_id):
        valid = True
        msg = ""
        data = ""
        cursor = self.db.experiments.find({
            "target": {"$exists": True},
            "revoked_files.0": {"$exists": False},
            "assembly.0": {"$exists": True},
            "assembly.1": {"$exists": False},
            "@id": "/experiments/%s/" % (experiment_id,)
        })
        if cursor.count() == 1:
            document = cursor.next()
            data = document["assembly"][0]
aknecht2's avatar
aknecht2 committed
189
            msg = "Succesfully retrieved assembly for experiment with id '%s'.\n" % (experiment_id,)
190
191
        else:
            valid = False
aknecht2's avatar
aknecht2 committed
192
            msg = "Experiment with id '%s' does not exist.\n" % (experiment_id,)
193
194
        return (valid, msg, data)

195
196
197
198
    def get_samples(self, experiment_id):
        valid = True
        msg = ""
        data = {}
199
200
201
202
        # First, check to make sure the target experiment is valid
        if self.is_valid_experiment(experiment_id):
            # Next, we check that there is a least 1 possible control
            check3 = self.db.experiments.find({
203
204
                "target": {"$exists": True},
                "revoked_files.0": {"$exists": False},
205
206
207
                "assembly.0": {"$exists": True},
                "assembly.1": {"$exists": False},
                "possible_controls.0": {"$exists": True},
208
209
                "@id": "/experiments/%s/" % (experiment_id,)
            })
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
            if check3.count() == 1:
                # Complicated aggregtaion pipeline does the following steps:
                # 1. Find the experiment that matches the given id
                # 2. Join samples into the collection by exp_id
                # 3. Iterate through possible_controls
                # 4. Join possible_control data into control_exps
                # 5. Iterate through control_exps
                # 6. Join samples into the control_exps by exp_id
                # 7. Re-aggregate all data into arrays
                pipeline = [
                    {
                        "$match": {
                            "target": {"$exists": True},
                            "revoked_files.0": {"$exists": False},
                            "assembly.0": {"$exists": True},
                            "assembly.1": {"$exists": False},
                            "possible_controls.0": {"$exists": True},
                            "@id": "/experiments/%s/" % (experiment_id,)
228
                        }
229
230
231
232
233
234
235
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "uuid",
                            "foreignField": "experiment_id",
                            "as": "samples"
236
                        }
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
                    },
                    {
                        "$unwind": "$possible_controls"
                    },
                    {
                        "$lookup": {
                            "from": "samples",
                            "localField": "possible_controls.uuid",
                            "foreignField": "experiment_id",
                            "as": "possible_controls.samples"
                        }
                    },
                    {
                        "$group": {
                            "_id": "$_id",
                            "possible_controls": {"$push": "$possible_controls"},
                            "samples": {"$push": "$samples"}
                        }
                    }
                ]
                cursor = self.db.experiments.aggregate(pipeline)
                # We should have only 1 document
                document = cursor.next()
                control_inputs = [sample for control in document["possible_controls"] for sample in control["samples"] if ("file_type" in sample and sample["file_type"] == "fastq")]
                experiment_inputs = [sample for sample in document["samples"][0] if ("file_type" in sample and sample["file_type"] == "fastq")]
                if (len(control_inputs) > 0 and len(experiment_inputs) > 0):
                    msg = "Succesfully retrieved input files for experiment with id '%s'.\n" % (experiment_id,)
                    data = {
                        "control": control_inputs,
                        "experiment": experiment_inputs
                    }
268
269
                else:
                    valid = False
270
                    msg = "Experiment with id '%s' has %s possible control inputs, and %s possible experiment inputs.\n" % (experiment_id, len(control_inputs), len(experiment_inputs))
271
272
            else:
                valid = False
273
                msg = "Experiment with id '%s' does not have possible_controls.\n" % (experiment_id,)
274
275
        else:
            valid = False
276
            msg = "Experiment with id '%s' is not valid!  It may not exist, or it may be missing required metadata.\n" % (experiment_id,)
277
        return (valid, msg, data)