diff --git a/JSchnable.tex b/JSchnable.tex
index 8179f81968df1dbe3d9f65d182b9e9795cdb2d4d..57c9cc4572531729baa04a345db433bb74593e89 100644
--- a/JSchnable.tex
+++ b/JSchnable.tex
@@ -274,12 +274,10 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
 
 \noindent \textbf{Mural RV}, \textbf{Grzybowski M}, \textbf{Miao C}, \textbf{Damke A}$^\ddagger$, Sapkota S, Boyles RE, Salas Fernandez MG, Schnable PS, \textbf{Sigmon B}, Kresovich S, \textbf{Schnable JC}$^\S$ Meta-analysis identifies pleiotropic loci controlling phenotypic trade-offs in sorghum. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.10.27.355495}{10.1101/2020.10.27.355495}\\
 
-\noindent \textbf{Meng X}, \textbf{Liang Z}, \textbf{Dai X}, \textbf{Zhang Y}}, Mahboub S, \textbf{Ngu DW}$^\ddagger$, Roston RL, \textbf{Schnable JC}$^\S$ Predicting transcriptional responses to cold stress across plant species. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.25.266635}{10.1101/2020.08.25.266635}\\
+\noindent \textbf{Meng X}, \textbf{Liang Z}, \textbf{Dai X}, \textbf{Zhang Y}, Mahboub S, \textbf{Ngu DW}$^\ddagger$, Roston RL, \textbf{Schnable JC}$^\S$ Predicting transcriptional responses to cold stress across plant species. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.25.266635}{10.1101/2020.08.25.266635}\\
 
 \noindent \textbf{Miao C}, \textbf{Hoban TP}$^\ddagger$, \textbf{Pages A}$^\ddagger$, Xu Z, Rodene E, Ubbens J, Stavness I, Yang J, \textbf{Schnable JC}$^\S$ Simulated plant images improve maize leaf counting accuracy. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/706994}{10.1101/706994} \\
 
-\noindent Weissmann S, Huang P, Furoyama K, Wiechert M, Taniguchi M, \textbf{Schnable JC},$^\S$ Brutnell TP, Mockler TC$^\S$ DCT4 - a new member of the dicarboxylate transporter family in C\textsubscript{4} grasses. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/762724}{10.1101/762724}\\
-
 \noindent Meier MA, Lopenz-Guerrero MG, Guo M, Schmer MR, Herr JR, \textbf{Schnable JC}, Alfano JR, Yang J$^\S$. Rhizosphere microbiomes in a historical maize/soybean rotation system respond to host species and nitrogen fertilization at genus and sub-genus levels. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.10.244384}{10.1101/2020.08.10.244384}\\
 
 
@@ -295,15 +293,25 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
 
 %\noindent Rogers AR, Dunne JC, Romay C ... \textbf{Schnable JC} (24th of 39 authors) ... Kaeppler S, De Leon N, Holland JB. The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. \textit{(In Review)}\\
 
-%\noindent Jarquin D, de Leon N, Romay C ... \textbf{Schnable JC} (24th of 32 authors) ... Wisser RJ, Xu W, Lorenz A. Utility of climatic information via combining ability models to improve genomic prediction for yield within the Genomes to Fields maize project. \textit{(In Review)}\\
+%\noindent Wang M, Shilo S, Levy AA, Zelkowski M, Olson MA, Jiang J, \textbf{Schnable JC}, Sun Q, Pillardy J, Kianian PMA, Kianian SF, Chen C, Pawlowski WP$^\S$ Elucidating features and evolution of recombination sites in plants using machine learning. \textit{(In Review)}
 
-%\noindent DiMario RJ, Kophs AN, Pathare VS, \textbf{Schnable JC}, Cousins AB$^\S$ Phospho\textit{enol}pyruvate carboxylase kinetic variation provides opportunity to enhance C4 photosynthetic efficiency. \textit{(In Review)}\\
+%\noindent Atefi A, Ge Y$^\S$, Pitla S, Schnable JC. Robotic Technologies for High-Throughput Plant Phenotyping: Reviews and Perspectives. \textit{(In Review)}
 
-%\noindent Wang M, Shilo S, Levy AA, Zelkowski M, Olson MA, Jiang J, \textbf{Schnable JC}, Sun Q, Pillardy J, Kianian PMA, Kianian SF, Chen C, Pawlowski WP$^\S$ Elucidating features and evolution of recombination sites in plants using machine learning. \textit{(In Review)}
+%\noindent Kusmec A, Yeh CT, AlKhalifa N ... \textbf{Schnable JC} (26th of 38 authors) ... Willis DM, Wisser RJ, Schnable PS$^\S$ Data-driven identification of environmental variables influencing phenotypic plasticity to facilitate breeding for future climates: a case study involving grain yield of hybrid maize. \textit{(In Review)}
+
+%\noindent Lai X, Bendix C, Zhang Y, \textbf{Schnable JC}, Harmon FG$^\S$ 72-hour diurnal RNA-seq analysis of fully expanded third leaves from maize, sorghum, and foxtail millet at 3-hour resolution. \textit{(In Review)}
 
 \begin{etaremune}
 \subsection*{Faculty Publications}
 
+\item Weissmann S, Huang P, Furoyama K, Wiechert M, Taniguchi M, \textbf{Schnable JC},$^\S$ Brutnell TP, Mockler TC$^\S$ (2021) DCT4 - a new member of the dicarboxylate transporter family in C\textsubscript{4} grasses. \textsc{Genome Biology and Evolution} \textit{(Accepted)} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/762724}{10.1101/762724}
+
+\item Jarquin D, de Leon N, Romay C ... \textbf{Schnable JC} (24th of 33 authors) ... Wisser RJ, Xu W, Lorenz A (2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the Genomes to Fields maize project. \textsc{Frontiers in Genetics} doi: \href{https://doi.org/10.3389/fgene.2020.592769}{10.3389/fgene.2020.592769}
+
+\item DiMario RJ, Kophs AN, Pathare VS, \textbf{Schnable JC}, Cousins AB$^\S$ (2021) Phospho\textit{enol}pyruvate carboxylase kinetic variation provides opportunity to enhance C4 photosynthetic efficiency. \textsc{The Plant Journal} doi: \href{https://doi.org/10.1111/tpj.15141}{10.1111/tpj.15141}
+
+\item Thudi M, Palakurthi R, \textbf{Schnable JC}, Chitikineni A, Dreisigacker S, Mace E, Srivastava RK, Satyavathi CT, Odeny D, Tiwari VK, Lam HM, Hong YB, Singh VK, Li G, Xu Y, Chen X, Nguyen H, Sivasankar S, Close TJ, Stein N, Jackson SA, Shubo W, Varshney RK$^\S$ (2021) Genomic resources in plant breeding for sustainable agriculture. \textsc{Journal of Plant Physiology} doi: \href{https://doi.org/10.1016/j.jplph.2020.153351}{10.1016/j.jplph.2020.153351}
+
 \item \textbf{Raju SKK}, Atkins M$^\ddagger$, \textbf{Enerson A}$^\ddagger$, \textbf{Carvalho DS}, Studer AJ, Ganapathysubramanian B, Schnable PS, \textbf{Schnable JC}$^\S$ (2020) Leaf Angle eXtractor - A high throughput image processing framework for leaf angle measurement in maize and sorghum. \textsc{Applications in Plant Sciences} doi: \href{https://doi.org/10.1002/aps3.11385}{10.1002/aps3.11385}
 
 \item Gaillard M$^*$, \textbf{Miao C}$^*$, \textbf{Schnable JC}$^\S$, Benes B$^\S$ (2020) Voxel carving based 3D reconstruction of sorghum identifies genetic determinants of radiation interception efficiency. \textsc{Plant Direct} doi: \href{https://doi.org/10.1002/pld3.255}{10.1002/pld3.255} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.04.06.028605}{10.1101/2020.04.06.028605v1}
@@ -314,7 +322,9 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
 
 \item Wang R, Qiu Y,$^\S$ Zhou Y, \textbf{Liang Z}, \textbf{Schnable JC} (2020) A high-throughput phenotyping pipeline for image processing and functional growth curve analysis. \textsc{Plant Phenomics} doi: \href{https://doi.org/10.34133/2020/7481687}{10.34133/2020/7481687}
 
-\item \textbf{Lai X}, Bendix C, \textbf{Yan L}, \textbf{Zhang Y}, \textbf{Schnable JC}, Harmon F$^\S$ (2020) Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs. \textsc{BMC Genomics} doi: \href{https://doi.org/10.1186/s12864-020-06824-3}{10.1186/s12864-020-06824-3}
+\item \textbf{Lai X}, Bendix C, \textbf{Yan L}, \textbf{Zhang Y}, \textbf{Schnable JC}, Harmon F$^\S$ (2020) Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs. \textsc{BMC Genomics} doi: \href{https://doi.org/10.1186/s12864-020-06824-3}{10.1186/s12864-020-06824-3}\\
+\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} October 2020
+
 
 \item Han J, Wang P, Wang Q, Lin Q, Yu G, \textbf{Miao C}, Dao Y, Wu R, \textbf{Schnable JC}, Tang H, Wang K$^\S$ (2020) Genome-wide characterization of DNase I-hypersensitive sites and cold response regulatory landscapes in grasses. \textsc{The Plant Cell} doi: \href{https://doi.org/10.1105/tpc.19.00716}{10.1105/tpc.19.00716}\\
 \textbf{\textit{ "In Brief" highlighting this article by SKK Raju}} doi: \href{https://doi.org/10.1105/tpc.20.00471}{10.1105/tpc.20.00471}
@@ -330,7 +340,8 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
 
 \item Adams J, Qiu Y, Xu Y, \textbf{Schnable JC}$^\S$ (2020) Plant segmentation by supervised machine learning methods. \textsc{The Plant Phenome Journal} doi: \href{http://dx.doi.org/10.1002/ppj2.20001}{10.1002/ppj2.20001}
 
-\item \textbf{Liang Z}, Qiu Y, \textbf{Schnable JC}$^\S$ (2020) Distinct characteristics of genes associated with phenome-wide variation in maize (\textit{Zea mays}). \textsc{Molecular Plant} doi: \href{https://doi.org/10.1016/j.molp.2020.03.003}{10.1016/j.molp.2020.03.003} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/534503}{10.1101/534503}
+\item \textbf{Liang Z}, Qiu Y, \textbf{Schnable JC}$^\S$ (2020) Distinct characteristics of genes associated with phenome-wide variation in maize (\textit{Zea mays}). \textsc{Molecular Plant} doi: \href{https://doi.org/10.1016/j.molp.2020.03.003}{10.1016/j.molp.2020.03.003} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/534503}{10.1101/534503}\\
+\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} May 2020
 
 \item Benes B, Guan K, Lang M, Long S, Lynch J, Marshall-Colon A$^\S$, Peng B, \textbf{Schnable JC}, Sweetlove L, Turk M (2020) Multiscale computational models can guide experimentation and targeted measurements for crop improvement. \textsc{The Plant Journal} doi: \href{https://doi.org/10.1111/tpj.14722}{10.1111/tpj.14722}
 
@@ -489,7 +500,7 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
 \item {\bf Schnable JC}, Pedersen BS, Subramaniam S, Freeling M$^\S$ (2011) Dose-sensitivity, conserved noncoding sequences and duplicate gene retention through multiple tetraploidies in the grasses. \textsc {Frontiers in Plant Science} doi: \href{http://dx.doi.org/10.3389/fpls.2011.00002}{10.3389/fpls.2011.00002}\\
 \textbf{\textit{Commentary by Birchlier and Veitia also published in Frontiers in Plant Science}} doi: \href{http://dx.doi.org/10.3389/fpls.2011.00064}{10.3389/fpls.2011.00064}
 
-\item {\bf Schnable JC}$^\S$, Freeling M (2011) Genes identifed by visible mutant phenotypes show increased bias towards one of two maize subgenomes. \textsc {PLoS One} doi: \href{http://dx.doi.org/10.1371/journal.pone.0017855}{10.1371/journal.pone.0017855}
+\item {\bf Schnable JC}$^\S$, Freeling M (2011) Genes identified by visible mutant phenotypes show increased bias towards one of two maize subgenomes. \textsc {PLoS One} doi: \href{http://dx.doi.org/10.1371/journal.pone.0017855}{10.1371/journal.pone.0017855}
 
 \item {\bf Schnable JC}, Springer NM, Freeling M$^\S$ (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. \textsc {Proceedings of the National Academy of Sciences} doi: \href{http://dx.doi.org/10.1073/pnas.1101368108}{10.1073/pnas.1101368108} \\
 \textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} May 2011