From a07b80d73eb1632654ab0a135e610b4dc1b152fd Mon Sep 17 00:00:00 2001
From: Zeynep Hakguder <zhakguder@cse.unl.edu>
Date: Fri, 15 Jun 2018 22:45:10 +0000
Subject: [PATCH] Replace model.ipynb

---
 ProgrammingAssignment_2/model.ipynb | 52 -----------------------------
 1 file changed, 52 deletions(-)

diff --git a/ProgrammingAssignment_2/model.ipynb b/ProgrammingAssignment_2/model.ipynb
index 08813b2..413c74b 100644
--- a/ProgrammingAssignment_2/model.ipynb
+++ b/ProgrammingAssignment_2/model.ipynb
@@ -166,58 +166,6 @@
     "    raise NotImplementedError\n",
     "    return value"
    ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## General supervised learning performance related functions "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Implement the \"conf_matrix\" function that takes as input an array of true labels (*true*) and an array of predicted labels (*pred*)."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def conf_matrix(true, pred):\n",
-    "    '''\n",
-    "    Args:    \n",
-    "        true:  ndarray\n",
-    "            nx1 array of true labels for test set\n",
-    "        pred: ndarray \n",
-    "            nx1 array of predicted labels for test set\n",
-    "    Returns:\n",
-    "        ndarray\n",
-    "    '''\n",
-    "        \n",
-    "    tp = tn = fp = fn = 0\n",
-    "    # calculate true positives (tp), true negatives(tn)\n",
-    "    # false positives (fp) and false negatives (fn)\n",
-    "    \n",
-    "    size = len(true)\n",
-    "    for i in range(size):\n",
-    "        if true[i]==1:\n",
-    "            if pred[i] == 1:               \n",
-    "                tp += 1\n",
-    "            else: \n",
-    "                fn += 1\n",
-    "        else:\n",
-    "            if pred[i] == 0:\n",
-    "                tn += 1    \n",
-    "            else:\n",
-    "                fp += 1                            \n",
-    "    \n",
-    "    # returns the confusion matrix as numpy.ndarray\n",
-    "    return np.array([tp,tn, fp, fn])"
-   ]
   }
  ],
  "metadata": {
-- 
GitLab