Skip to content
Snippets Groups Projects
Commit f7c0de0e authored by Jeffrey Stevens's avatar Jeffrey Stevens
Browse files

Fixed more typos

parent db6facaa
Branches
No related tags found
No related merge requests found
No preview for this file type
......@@ -163,7 +163,7 @@ $\frac{P(D|H_1)}{P(D|H_0)}$
\normalsize
\pause
whereas $BF_{01}$ is evidence for $H_0$ over $H_1$
* Whereas $BF_{01}$ is evidence for $H_0$ over $H_1$
\LARGE
\begin{center}
......@@ -280,10 +280,10 @@ $\frac{P(D|H_0)}{P(D|H_1)}$
## Model selection
\Large
If $BF_{10} = \frac{p(D|H_1)}{p(D|H_0)}$ and $BF_{20} = \frac{p(D|H_2)}{p(D|H_0)}$,
If $BF_{10} = \frac{P(D|H_1)}{P(D|H_0)}$ and $BF_{20} = \frac{P(D|H_2)}{P(D|H_0)}$,
\pause
then $BF_{12} = \frac{p(D|H_1)}{p(D|H_2)} = \frac{BF_{10}}{BF_{20}}$.
then $BF_{12} = \frac{P(D|H_1)}{P(D|H_2)} = \frac{BF_{10}}{BF_{20}}$.
\pause
\normalsize
......@@ -319,6 +319,7 @@ $BF_{interaction} = \frac{16}{14} = 1.14$
* You can calculate Bayes factors from existing analyses (e.g., if the full data are not available) with test statistics and sample sizes
- Binomial tests
- T-tests
- One-way ANOVAs
- Correlations
- Regressions
......@@ -333,7 +334,7 @@ $BF_{interaction} = \frac{16}{14} = 1.14$
* Methods
- Define Bayes factor (I cite Wagenmakers, 2007)
- Describe levels of evidence (I cite Wagenmakers et al., 2018)
- Describe priors/assumptions
- Describe priors/assumptions (I cite journal articles cited by packages)
\pause
* Results
- Clarify direction (alternative/null)
......
No preview for this file type
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment