Newer
Older
+++
title = "MPI Jobs on HCC"
description = "How to compile and run MPI programs on HCC machines"
weight = "52"
+++
This quick start demonstrates how to implement a parallel (MPI)
Fortran/C program on HCC supercomputers. The sample codes and submit
scripts can be downloaded from [mpi_dir.zip](/attachments/mpi_dir.zip).
#### Login to a HCC Cluster
Connect to a HCC cluster]({{< relref "../../connecting/" >}}) and make a subdirectory
and make a subdirectory called `mpi_dir` under your `$WORK` directory.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{{< highlight bash >}}
$ cd $WORK
$ mkdir mpi_dir
{{< /highlight >}}
In the subdirectory `mpi_dir`, save all the relevant codes. Here we
include two demo programs, `demo_f_mpi.f90` and `demo_c_mpi.c`, that
compute the sum from 1 to 20 through parallel processes. A
straightforward parallelization scheme is used for demonstration
purpose. First, the master core (i.e. `myid=0`) distributes equal
computation workload to a certain number of cores (as specified by
`--ntasks `in the submit script). Then, each worker core computes a
partial summation as output. Finally, the master core collects the
outputs from all worker cores and perform an overall summation. For easy
comparison with the serial code ([Fortran/C on HCC]({{< relref "fortran_c_on_hcc">}})), the
added lines in the parallel code (MPI) are marked with "!=" or "//=".
{{%expand "demo_f_mpi.f90" %}}
{{< highlight fortran >}}
Program demo_f_mpi
!====== MPI =====
use mpi
!================
implicit none
integer, parameter :: N = 20
real*8 w
integer i
common/sol/ x
real*8 x
real*8, dimension(N) :: y
!============================== MPI =================================
integer ind
real*8, dimension(:), allocatable :: y_local
integer numnodes,myid,rc,ierr,start_local,end_local,N_local
real*8 allsum
!====================================================================
!============================== MPI =================================
call mpi_init( ierr )
call mpi_comm_rank ( mpi_comm_world, myid, ierr )
call mpi_comm_size ( mpi_comm_world, numnodes, ierr )
!
N_local = N/numnodes
allocate ( y_local(N_local) )
start_local = N_local*myid + 1
end_local = N_local*myid + N_local
!====================================================================
do i = start_local, end_local
w = i*1d0
call proc(w)
ind = i - N_local*myid
y_local(ind) = x
! y(i) = x
! write(6,*) 'i, y(i)', i, y(i)
enddo
! write(6,*) 'sum(y) =',sum(y)
!============================================== MPI =====================================================
call mpi_reduce( sum(y_local), allsum, 1, mpi_real8, mpi_sum, 0, mpi_comm_world, ierr )
call mpi_gather ( y_local, N_local, mpi_real8, y, N_local, mpi_real8, 0, mpi_comm_world, ierr )
if (myid == 0) then
write(6,*) '-----------------------------------------'
write(6,*) '*Final output from... myid=', myid
write(6,*) 'numnodes =', numnodes
write(6,*) 'mpi_sum =', allsum
write(6,*) 'y=...'
do i = 1, N
write(6,*) y(i)
enddo
write(6,*) 'sum(y)=', sum(y)
endif
deallocate( y_local )
call mpi_finalize(rc)
!========================================================================================================
Stop
End Program
Subroutine proc(w)
real*8, intent(in) :: w
common/sol/ x
real*8 x
x = w
Return
End Subroutine
{{< /highlight >}}
{{% /expand %}}
{{%expand "demo_c_mpi.c" %}}
{{< highlight c >}}
//demo_c_mpi
#include <stdio.h>
//======= MPI ========
#include "mpi.h"
#include <stdlib.h>
//====================
double proc(double w){
double x;
x = w;
return x;
}
int main(int argc, char* argv[]){
int N=20;
double w;
int i;
double x;
double y[N];
double sum;
//=============================== MPI ============================
int ind;
double *y_local;
int numnodes,myid,rc,ierr,start_local,end_local,N_local;
double allsum;
//================================================================
//=============================== MPI ============================
MPI_Init(&argc, &argv);
MPI_Comm_rank( MPI_COMM_WORLD, &myid );
MPI_Comm_size ( MPI_COMM_WORLD, &numnodes );
N_local = N/numnodes;
y_local=(double *) malloc(N_local*sizeof(double));
start_local = N_local*myid + 1;
end_local = N_local*myid + N_local;
//================================================================
for (i = start_local; i <= end_local; i++){
w = i*1e0;
x = proc(w);
ind = i - N_local*myid;
y_local[ind-1] = x;
// y[i-1] = x;
// printf("i,x= %d %lf\n", i, y[i-1]) ;
}
sum = 0e0;
for (i = 1; i<= N_local; i++){
sum = sum + y_local[i-1];
}
// printf("sum(y)= %lf\n", sum);
//====================================== MPI ===========================================
MPI_Reduce( &sum, &allsum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD );
MPI_Gather( &y_local[0], N_local, MPI_DOUBLE, &y[0], N_local, MPI_DOUBLE, 0, MPI_COMM_WORLD );
if (myid == 0){
printf("-----------------------------------\n");
printf("*Final output from... myid= %d\n", myid);
printf("numnodes = %d\n", numnodes);
printf("mpi_sum = %lf\n", allsum);
printf("y=...\n");
for (i = 1; i <= N; i++){
printf("%lf\n", y[i-1]);
}
sum = 0e0;
for (i = 1; i<= N; i++){
sum = sum + y[i-1];
}
printf("sum(y) = %lf\n", sum);
}
free( y_local );
MPI_Finalize ();
//======================================================================================
return 0;
}
{{< /highlight >}}
{{% /expand %}}
---
#### Compiling the Code
The compiling of a MPI code requires first loading a compiler "engine"
such as `gcc`, `intel`, or `pgi` and then loading a MPI wrapper
`openmpi`. Here we will use the GNU Complier Collection, `gcc`, for
demonstration.
{{< highlight bash >}}
$ module load compiler/gcc/6.1 openmpi/2.1
$ mpif90 demo_f_mpi.f90 -o demo_f_mpi.x
$ mpicc demo_c_mpi.c -o demo_c_mpi.x
{{< /highlight >}}
The above commends load the `gcc` complier with the `openmpi` wrapper.
The compiling commands `mpif90` or `mpicc` are used to compile the codes
to`.x` files (executables).
### Creating a Submit Script
Create a submit script to request 5 cores (with `--ntasks`). A parallel
execution command `mpirun ./` needs to enter to last line before the
main program name.
{{% panel header="`submit_f.mpi`"%}}
{{< highlight bash >}}
#!/bin/sh
#SBATCH --ntasks=5
#SBATCH --mem-per-cpu=1024
#SBATCH --time=00:01:00
#SBATCH --job-name=Fortran
#SBATCH --error=Fortran.%J.err
#SBATCH --output=Fortran.%J.out
mpirun ./demo_f_mpi.x
{{< /highlight >}}
{{% /panel %}}
{{% panel header="`submit_c.mpi`"%}}
{{< highlight bash >}}
#!/bin/sh
#SBATCH --ntasks=5
#SBATCH --mem-per-cpu=1024
#SBATCH --time=00:01:00
#SBATCH --job-name=C
#SBATCH --error=C.%J.err
#SBATCH --output=C.%J.out
mpirun ./demo_c_mpi.x
{{< /highlight >}}
{{% /panel %}}
#### Submit the Job
The job can be submitted through the command `sbatch`. The job status
can be monitored by entering `squeue` with the `-u` option.
{{< highlight bash >}}
$ sbatch submit_f.mpi
$ sbatch submit_c.mpi
$ squeue -u <username>
{{< /highlight >}}
Replace `<username>` with your HCC username.
Sample Output
-------------
The sum from 1 to 20 is computed and printed to the `.out` file (see
below). The outputs from the 5 cores are collected and processed by the
master core (i.e. `myid=0`).
{{%expand "Fortran.out" %}}
{{< highlight batchfile>}}
-----------------------------------------
*Final output from... myid= 0
numnodes = 5
mpi_sum = 210.00000000000000
y=...
1.0000000000000000
2.0000000000000000
3.0000000000000000
4.0000000000000000
5.0000000000000000
6.0000000000000000
7.0000000000000000
8.0000000000000000
9.0000000000000000
10.000000000000000
11.000000000000000
12.000000000000000
13.000000000000000
14.000000000000000
15.000000000000000
16.000000000000000
17.000000000000000
18.000000000000000
19.000000000000000
20.000000000000000
sum(y)= 210.00000000000000
{{< /highlight >}}
{{% /expand %}}
{{%expand "C.out" %}}
{{< highlight batchfile>}}
-----------------------------------
*Final output from... myid= 0
numnodes = 5
mpi_sum = 210.000000
y=...
1.000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000
10.000000
11.000000
12.000000
13.000000
14.000000
15.000000
16.000000
17.000000
18.000000
19.000000
20.000000
sum(y) = 210.000000
{{< /highlight >}}
{{% /expand %}}