Skip to content
Snippets Groups Projects
ProgrammingAssignment1.ipynb 15.3 KiB
Newer Older
Zeynep Hakguder's avatar
pa1
Zeynep Hakguder committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# *k*-Nearest Neighbor\n",
    "\n",
    "We'll implement *k*-Nearest Neighbor (*k*-NN) algorithm for this assignment. You can use data available in machine learning repositories such as [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php) or a dataset related to your research. Your dataset should \n",
    "* have labels (suited for classification)\n",
    "* ideally have between 1,000 - 5,000 examples\n",
    "\n",
    "A skeleton of a general supervised learning model is provided in \"model.ipynb\". The functions that will be implemented there will be indicated in this notebook. \n",
    "\n",
    "### Assignment Goals:\n",
    "In this assignment, we will:\n",
    "* implement 'Euclidean' and 'Manhattan' distance metrics \n",
    "* use the validation dataset to find a good value for *k*\n",
    "* evaluate our model with respect to performance measures:\n",
    "    * accuracy, generalization error and ROC curve\n",
    "* try to assess if *k*-NN is suitable for the dataset you used\n",
    "\n",
    "### Note:\n",
    "\n",
    "You are not required to follow this exact template. You can change what parameters your functions take or partition the tasks across functions differently. However, make sure there are outputs and implementation for items listed in the rubric for each task. Also, indicate in code with comments which task you are attempting."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# GRADING\n",
    "\n",
    "You will be graded on parts that are marked with **\\#TODO** comments. Read the comments in the code to make sure you don't miss any.\n",
    "\n",
    "### Mandatory for 478 & 878:\n",
    "\n",
    "|   | Tasks                      | 478 | 878 |\n",
    "|---|----------------------------|-----|-----|\n",
    "| 1 | Implement `distance`       |  10 |  10 |\n",
    "| 2 | Implement `k-NN` methods   |  25 |  20 |\n",
    "| 3 | Model evaluation           |  25 |  20 |\n",
    "| 4 | Learning curve             |  20 |  20 |\n",
    "| 6 | ROC curve analysis         |  20 |  20 |\n",
    "\n",
    "### Mandatory for 878, bonus for 478\n",
    "\n",
    "|   | Tasks          | 478 | 878 |\n",
    "|---|----------------|-----|-----|\n",
    "| 5 | Optimizing *k* | 10  | 10  |\n",
    "\n",
    "### Bonus for 478/878\n",
    "\n",
    "|   | Tasks          | 478 | 878 |\n",
    "|---|----------------|-----|-----|\n",
    "| 7 | Assess suitability of *k*-NN | 10  | 10  |\n",
    "\n",
    "Points are broken down further below in Rubric sections. The **first** score is for 478, the **second** is for 878 students. There are a total of 100 points in this assignment and extra 20 bonus points for 478 students and 10 bonus points for 878 students."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can use numpy for array operations and matplotlib for plotting for this assignment. Please do not add other libraries."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Following code makes the Model class and relevant functions available from model.ipynb."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%run 'model.ipynb'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## TASK 1: Implement `distance` function"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Choice of distance metric plays an important role in the performance of *k*-NN. Let's start with implementing a distance method  in the \"distance\" function in **model.ipynb**. It should take two data points and the name of the metric and return a scalar value."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Rubric:\n",
    "* Euclidean +5, +5\n",
    "* Manhattan +5, +5"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Test `distance`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "x = np.array(range(100))\n",
    "y = np.array(range(100, 200))\n",
    "dist_euclidean = distance(x, y, 'Euclidean')\n",
    "dist_manhattan = distance(x, y, 'Manhattan')\n",
    "print('Euclidean distance: {}, Manhattan distance: {}'.format(dist_euclidean, dist_manhattan))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## TASK 2: Implement $k$-NN Class Methods"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can start implementing our *k*-NN classifier. *k*-NN class inherits Model class. Use the \"distance\" function you defined above. \"fit\" method takes *k* as an argument. \"predict\" takes as input an *mxd* array containing *d*-dimensional *m* feature vectors for examples and outputs the predicted class and the ratio of positive examples in *k* nearest neighbors."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Rubric:\n",
    "* correct implementation of fit method +5, +5\n",
    "* correct implementation of predict method +20, +15"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "class kNN(Model):\n",
    "    '''\n",
    "    Inherits Model class. Implements the k-NN algorithm for classification.\n",
    "    '''\n",
    "       \n",
    "    def fit(self, training_features, training_labels, classes, k, distance_f,**kwargs):\n",
    "        '''\n",
    "        Fit the model. This is pretty straightforward for k-NN.\n",
    "        Args:\n",
    "            training_features: ndarray\n",
    "            training_labels: ndarray\n",
    "            classes: ndarray\n",
    "                1D array containing unique classes in the dataset\n",
    "            k: int\n",
    "            distance_f: function\n",
    "            kwargs: dict\n",
    "                Contains keyword arguments that will be passed to distance_f\n",
    "        '''\n",
    "        # TODO\n",
    "        # set self.train_features, self.train_labels, self.classes, self.k, self.distance_f, self.distance_metric\n",
    "        \n",
    "        raise NotImplementedError\n",
    "\n",
    "        return\n",
    "    \n",
    "    \n",
    "    def predict(self, test_features):\n",
    "        '''\n",
    "        Args:\n",
    "            test_features: ndarray\n",
    "                mxd array containing features for the points to be predicted\n",
    "        Returns: \n",
    "            ndarray\n",
    "        '''\n",
    "        raise NotImplementedError\n",
    "        \n",
    "        pred = []\n",
    "        # TODO\n",
    "        \n",
    "        # for each point in test_features\n",
    "        # use your implementation of distance function\n",
    "        #  distance_f(..., distance_metric)\n",
    "        # to find the labels of k-nearest neighbors. \n",
    "\n",
    "        # you'll need proportion of the dominant class\n",
    "        # in k nearest neighbors\n",
    "        \n",
    "        return np.array(pred)\n",
    "    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## TASK 3: Build and Evaluate the Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Rubric:\n",
    "* Reasonable accuracy values +10, +5\n",
    "* Reasonable confidence intervals on the error estimate +10, +10\n",
    "* Reasonable confusion matrix +5, +5"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Preprocess the data files and partition the data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# initialize the model\n",
    "my_model = kNN()\n",
    "# obtain features and labels from files\n",
    "features, labels = preprocess(feature_file=..., label_file=...)\n",
    "# get class names (unique entries in labels)\n",
    "classes = np.unique(labels)\n",
    "# partition the data set\n",
    "val_indices, test_indices, train_indices = partition(size=..., t = 0.3, v = 0.1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Assign a value to *k* and fit the *k*-NN model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# pass the training features and labels to the fit method\n",
    "kwargs_f = {'metric': 'Euclidean'}\n",
    "my_model.fit(training_features=..., training_labels-..., classes, k=10, distance_f=..., **kwargs_f)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Computing the confusion matrix for *k* = 10\n",
    "Now that we have the true labels and the predicted ones from our model, we can build a confusion matrix and see how accurate our model is. Implement the \"conf_matrix\" function (in model.ipynb) that takes as input an array of true labels (*true*) and an array of predicted labels (*pred*). It should output a numpy.ndarray. You do not need to change the value of the threshold parameter yet."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# TODO\n",
    "\n",
    "# get model predictions\n",
    "pred_ratios = my_model.predict(features[test_indices])\n",
    "\n",
    "# For now, we will consider a data point as predicted in a class if more than 0.5 \n",
    "# of its k-neighbors are in that class.\n",
    "threshold = 0.5\n",
    "# convert predicted ratios to predicted labels\n",
    "pred_labels = None\n",
    "\n",
    "# show the distribution of predicted and true labels in a confusion matrix\n",
    "confusion = conf_matrix(...)\n",
    "confusion"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Evaluate your model on the test data and report your **accuracy**. Also, calculate and report the 95% confidence interval on the generalization **error** estimate."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# TODO\n",
    "# Calculate and report accuracy and generalization error with confidence interval here. Show your work in this cell.\n",
    "\n",
    "print('Accuracy: {}'.format(accuracy))\n",
    "print('Confidence interval: {}-{}'.format(lower_bound, upper_bound))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    " ## TASK 4: Plotting a learning curve\n",
    " \n",
    "A learning curve shows how error changes as the training set size increases. For more information, see [learning curves](https://www.dataquest.io/blog/learning-curves-machine-learning/).\n",
    "We'll plot the error values for training and validation data while varying the size of the training set. Report a good size for training set for which there is a good balance between bias and variance."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Rubric:\n",
    "* Correct training error calculation for different training set sizes +8, +8\n",
    "* Correct validation error calculation for different training set sizes +8, +8\n",
    "* Reasonable learning curve +4, +4"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# train using %10, %20, %30, ..., 100% of training data\n",
    "training_proportions = np.arange(0.10, 1.01, 0.10)\n",
    "train_size = len(train_indices)\n",
    "training_sizes = np.int(np.ceil(train_size*proportion))\n",
    "\n",
    "# TODO\n",
    "error_train = []\n",
    "error_val = []\n",
    "\n",
    "# For each size in training_sizes\n",
    "for size in training_sizes:\n",
    "    # fit the model using \"size\" data point\n",
    "    # Calculate error for training and validation sets\n",
    "    # populate error_train and error_val arrays. \n",
    "    # Each entry in these arrays\n",
    "    # should correspond to each entry in training_sizes.\n",
    "\n",
    "# plot the learning curve\n",
    "plt.plot(training_sizes, error_train, 'r', label = 'training_error')\n",
    "plt.plot(training_sizes, error_val, 'g', label = 'validation_error')\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## TASK 5: Determining *k*"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Rubric:\n",
    "* Accuracies reported with various *k* values +5, +5\n",
    "* Confusion matrices shown for various *k* values +5, +5"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can use the validation set to come up with a *k* value that results in better performance in terms of accuracy.\n",
    "\n",
    "Below calculate the accuracies for different values of *k* using the validation set. Report a good *k* value and use it in the analyses that follow this section. Report confusion matrix for the new value of *k*."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# TODO\n",
    "\n",
    "# Change values of k. \n",
    "# Calculate accuracies for the validation set.\n",
    "# Report a good k value.\n",
    "# Calculate the confusion matrix for new k."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## TASK 6: ROC curve analysis\n",
    "* Correct implementation +20, +20"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "ROC curves are a good way to visualize sensitivity vs. 1-specificity for varying cut off points. Now, implement, in *model.ipynb*, a \"ROC\" function. \"ROC\" takes a list containing different threshold values to try and returns two arrays; one where each entry is the sensitivity at a given threshold and the other where entries are 1-specificities."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Use the *k* value you found above, if you completed TASK 5, else use *k* = 10 to plot the ROC curve for values between 0.1 and 1.0."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# TODO\n",
    "# ROC curve\n",
    "roc_sens, roc_spec_ = ROC(true_labels=..., preds=..., np.arange(0.1, 1.0, 0.1))\n",
    "plt.plot(roc_sens, roc_spec_)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## TASK 7: Assess suitability of *k*-NN to your dataset"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Use this cell to write about your understanding of why *k*-NN performed well if it did or why not if it didn't. What properties of the dataset could have affected the performance of the algorithm?"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}