Select Git revision
JSchnable.tex
JSchnable.tex 72.57 KiB
%adapted from:
%https://github.com/rossibarra/CV
\documentclass[letterpaper]{article}
\usepackage{CJKutf8}
\usepackage{hyperref}
\usepackage{geometry}
\usepackage{etaremune}
\usepackage{fixltx2e}
\usepackage{pgf}
\usepackage{float}
\usepackage{textcomp}
%\usepackage{eurofont}
\usepackage{color}
\usepackage{verbatim}
\definecolor{unlred}{rgb}{0.0,0.0,0.71}
% Comment the following lines to use the default Computer Modern font
% instead of the Palatino font provided by the mathpazo package.
% Remove the 'osf' bit if you don't like the old style figures.
\usepackage[T1]{fontenc}
\usepackage[sc,osf]{mathpazo}
\usepackage{setspace}
% Set your name here
\def\name{James C. Schnable}
\renewcommand\thefootnote{\textcolor{unlred}{\arabic{footnote}}}
% Replace this with a link to your CV if you like, or set it empty
% (as in \def\footerlink{}) to remove the link in the footer:
%\def\footerlink{https://github.com/rossibarra/CV/blob/master/CV.pdf?raw=true}
%Add in-line comments
\newcommand{\ignore}[1]{}
% The following metadata will show up in the PDF properties
\hypersetup{
colorlinks = true,
urlcolor = unlred,
pdfauthor = {\name},
pdfkeywords = {comparative genomics, maize, grasses},
pdftitle = {\name: Curriculum Vitae},
pdfsubject = {Curriculum Vitae},
pdfpagemode = UseNone
}
\geometry{
body={6.5in, 9in},
left=1.0in,
top=1.0in
}
% Customize page headers
\pagestyle{myheadings}
\markright{\name}
\thispagestyle{empty}
% Custom section fonts
\usepackage{sectsty}
\sectionfont{\rmfamily\mdseries\Large}
\subsectionfont{\rmfamily\mdseries\itshape\large}
% Other possible font commands include:
% \ttfamily for teletype,
% \sffamily for sans serif,
% \bfseries for bold,
% \scshape for small caps,
% \normalsize, \large, \Large, \LARGE sizes.
% Don't indent paragraphs.
\setlength\parindent{0em}
% Make lists without bullets
\renewenvironment{itemize}{
\begin{list}{}{
\setlength{\leftmargin}{1.5em}
}
}{
\end{list}
}
\begin{document}
% Place name at left
\centerline{\huge \textsc{Curriculum Vitae}}
\vspace{0.25in}
\centerline{\huge \textsc{\name}}
%Updated transliteration of Schnable, thanks to Zhikai Liang
\centerline{\begin{CJK*}{UTF8}{gbsn}詹姆斯 . 施耐博\end{CJK*}}
% Alternatively, print name centered and bold:
%\centerline{\huge \bf \name}
\vspace{0.25in}
%ADDRESS
\begin{minipage}{0.5\linewidth}
\begin{center}
% \href{http://bigdata.unl.edu/}{Quantitative Life Sciences Initiative}\\
% \href{http://www.unl.edu/psi/}{Center for Plant Science Innovation}\\
% \href{https://foodforhealth.unl.edu/}{Nebraska Food for Health Center}\\
% \href{http://agronomy.unl.edu}{Department of Agronomy \& Horticulture}\\
% \href{http://www.unl.edu}{University of Nebraska-Lincoln} \\
Quantitative Life Sciences Initiative\\
Center for Plant Science Innovation\\
Department of Agronomy \& Horticulture\\
University of Nebraska-Lincoln\\
\end{center}
\end{minipage}
\begin{minipage}{0.5\linewidth}
\begin{center}
\begin{tabular}{ll}
Office: & E207 Beadle Center \\
Phone: & (402) 472-4540 \\
% Fax: & \\
Email: & \href{mailto:schnable@unl.edu}{schnable@unl.edu} \\
Web: & \href{http://www.schnablelab.org/}{schnablelab.org}\footnote{Clickable hyperlinks are in \textcolor{unlred}{blue} throughout}
% \\
\end{tabular}
\end{center}
\end{minipage}
%EMPLOYMENT
\section*{Employment}
\begin{itemize}
\item University of Nebraska-Lincoln
\\Charles O. Gardner Professor of Maize Quantitative Genetics \hfill 2019-Present
\\Associate Professor, Department of Agronomy and Horticulture \hfill 2019-Present
\\Assistant Professor, Department of Agronomy and Horticulture \hfill 2014-2019
\item Chinese Academy of Agricultural Sciences\\
NSF PGRP Fellowship Supported Visiting Scholar \hfill 2014
\item Donald Danforth Plant Science Center\\
NSF PGRP Fellowship Supported Postdoctoral Researcher \hfill 2013
\end{itemize}
%EDUCATION
\section*{Education}
\begin{itemize}
\item PhD Plant Biology \hfill 2008-2012\\University of California-Berkeley (Advisor: Michael Freeling)
\item BA Biology \hfill 2004-2008\\Cornell University
\end{itemize}
\section*{Selected Honors and Awards}
\begin{itemize}
\item Outstanding Paper of the Year\hfill2020\\The Plant Phenome Journal
\item Early Career Award \hfill2019\\American Society of Plant Biologists
\item Plant Phenotyping Early Career Award \hfill2019\\North American Plant Phenotyping Network
\item Outstanding Scientific Article Award \hfill2018\\International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
\item Marcus Rhoades Early Career Award\hfill2018\\Maize Genetics Community
\item Tansley Medal Finalist\hfill2018\\New Phytologist Trust
\item Junior Faculty Excellence in Research Award\hfill2016\\University of Nebraska-Lincoln
%\item UNL Nominee, New Innovator in Food and Agriculture Research\hfill2017
%\item Faculty Fellow, Robert B. Dougherty Water for Food Institute\hfill2016-Present
\end{itemize}
\section*{Research Support}
\begin{center}
\$25.6M in total federal funding as PI/co-PI 2015-Present\\
\textit{(Excludes \$20M NSF Center for Root and Rhizobiome Innovation award (2016) and \$20M NSF AI Institute for Resilient Agriculture award (2021).)}
\end{center}
\subsection*{Federal (Current)}
\begin{itemize}
\item DOE ``\href{https://news.unl.edu/newsrooms/today/article/nebraska-team-merges-machine-learning-plant-genetics-to-maximize-sorghum/}{TGCM: (T)rait, (G)ene, and (C)rop Growth (M)odel directed targeted gene characterization in sorghum}.'' (PI) 2019-2022. \$2.7M
\item NSF ``\href{https://www.nsf.gov/awardsearch/showAward?AWD_ID=1838307}{RoL: FELS: EAGER: Genetic constraints on the increase of organismal complexity over time.}'' (PI) 2018-2021. \$300k
\item NSF ``\href{https://www.nsf.gov/awardsearch/showAward?AWD_ID=1844707}{BTT EAGER: A wearable plant sensor for real-time monitoring of sap flow and stem diameter to accelerate breeding for water use efficiency.}'' (PI) 2019-2021. \$300k
\item USDA-NIFA ``\href{https://portal.nifa.usda.gov/web/crisprojectpages/1022298-high-intensity-phenotyping-sites.html}{High Intensity Phenotyping Sites: Transitioning To A Nationwide Plant Phenotyping Network.}'' (co-PI) 2020-2023. \$3M
\item USDA-NIFA ``\href{https://portal.nifa.usda.gov/web/crisprojectpages/1022368-high-intensity-phenotyping-sitesa-multi-scale-multi-modal-sensing-and-sense-making-cyber-ecosystem-for-genomes-to-fields.html}{High Intensity Phenotyping Sites: A multi-scale, multi-modal sensing and sense-making cyber-ecosystem for Genomes to Fields.}'' (co-PI) 2020-2023. \$2.7M
\item USDA-NIFA ``\href{https://portal.nifa.usda.gov/web/crisprojectpages/1022122-cps-medium-collaborative-research-field-scale-single-plant-resolution-agricultural-management-using-coupled-molecular-and-macro-sensing-and-multi-scale-data-fusion-and-modeling.html}{CPS: Medium: Field-scale, single plant-resolution agricultural management using coupled molecular and macro sensing and multi-scale data fusion and modeling}'' (co-PI) (2020-2023) \$1.05M
\item ARPA-E ``\href{https://arpa-e.energy.gov/?q=news-item/arpa-e-announces-165-million-technologies-supporting-biofuels-supply-chain}{Soil Organic Carbon Networked Measurement System (SOCNET)}'' (co-PI) 2020-2023 \$1.9M
\item ARPA-E ``CORN- Crop Optimization Realized through Neuralnets'' (co-PI) 2020-2022 \$620k
\item NSF ``\href{https://www.nsf.gov/awardsearch/showAward?AWD_ID=1826781}{RII Track-2 FEC: Functional analysis of nitrogen responsive networks in Sorghum.}'' (co-PI) 2018-2022. \$4M
\item ARPA-E ``\href{https://unews.utah.edu/protecting-the-field-of-dreams/}{Low cost wireless chemical sensor networks.}'' (co-PI) 2019-2022. \$2.2M
\item FFAR ``\href{http://www.ncsa.illinois.edu/news/story/crops_in_silico_project_awarded_5_million}{Crops in silico: Increasing crop production by connecting models from the microscale to the macroscale.}'' (co-PI) 2019-2023. \$5M
\item NSF ``AI Institute for Resilient Agriculture'' (Investigator) 2021-2026 \$20M
\item NSF ``\href{https://nsf.gov/awardsearch/showAward?AWD_ID=1557417}{Center for Root and Rhizobiome Innovation.}'' (Investigator \& Management Team Member) 2016-2021. \$20M
%\item DOE-JGI Community Sequencing Program ``Expanding grass genome comparators.''
\end{itemize}
\subsection*{Non-Federal (Current)}
\begin{itemize}
\item ICRISAT ``Identifying Novel Loci Controlling Priority Traits in Pearl Millet and Sorghum using Supervised Classification Algorithms.'' (PI) 2020-2021 \$50k
\item Nebraska Corn Board ``Genomes to Fields (G2F) - Predicting Final Yield Performance in Variable Environments.'' (PI) 2016-2022. \$300k \textit{(to date)}
\item Wheat Innovation Foundation ``A Low-Cost, High-Throughput Cold Stress Perception Assay for Sorghum Breeding.'' (co-PI) 2019-2021. \$205k
\end{itemize}
\subsection*{Completed Projects}
\begin{itemize}
\item USDA-NIFA ``\href{https://portal.nifa.usda.gov/web/crisprojectpages/1008702-identifying-mechanisms-conferring-low-temperature-tolerance-in-maize-sorghum-and-frost-tolerant-relatives.html}{Identifying mechanisms conferring low temperature tolerance in maize, sorghum, and frost tolerant relatives.}'' (PI) 2015-2020. \$455k
\item ARPA-E ``\href{https://arpa-e.energy.gov/?q=slick-sheet-project/soil-sensors-nitrogen-use-efficiency}{In-plant and in-soil microsensors enabled high-throughput phenotyping of root nitrogen uptake and nitrogen use efficiency.}'' (co-PI) 2017-2019. \$1.1M
\item USDA/NSF Joint Program ``PAPM EAGER: Transitioning to the next generation plant phenotyping robots.'' (co-PI) 2016-2018. \$285k
\item North Central Sun Grants ``High through put phenotyping to accelerate biomass sorghum improvement.'' (co-PI) 2017-2019. \$193k
\item Daugherty Water for Food Global Institute ``Optimizing the Water Use Efficiency of C4 Grain Crops Using Comparative Phenomics and Crop Models to Guide Breeding Targets.'' (PI) 2017-2019. \$27k
\item Agricultural Research Division ``A High Throughput Phenotyping Reference Dataset for GWAS in Sorghum'' (PI) 2016-2018. \$100k
\item ICRISAT ``Application of tGBS And Genomic Selection to a Hybrid Pearl Millet Breeding Program.'' 2015-2017. \$45k
\item ConAgra ``Marker Discovery \& Genetic Diversity.'' (replacement PI) 2014-2017. \$162k
\item Iowa Corn Board ``Field Deployable Cameras to Quantify Dynamic Whole Plant Phenotypes in the Field.'' (PI) 2014-2016. \$43k
\item Midwest Big Data Hub ``Automatic feature extraction pipeline development for high-throughput plant phenotyping'' (co-PI) 2017-2018. \$5k
\item Layman Award ``Developing genomic tools in proso millet and comparing water use efficiency among panicoid grass crops (proso millet, corn, sorghum, foxtail millet)'' (co-PI) 2014-2015. \$10k
\end{itemize}
%\section*{Pending Support}
%\begin{itemize}
%\item ARPA-E ``In-plant and in-soil microsensors enabled high-throughput phenotyping of root nitrogen uptake and nitrogen use efficiency.''
%\end{itemize}
\section*{Economic Development}
\subsection*{Entrepreneurship}
\begin{itemize}
\item Co-Founder, \href{https://www.engeniousag.com/}{EnGeniousAg LLC}\hfill2017-Present\\
\textit{Designs, manufactures, and deploys low-cost, instant readout, high-performance, field-based nutrient sensors for crops, soil, and water, improving agronomic management practices, increasing grower profitability and reducing the environmental footprint of agriculture.}
\item Founder, \href{http://www.drylandgenetics.com/}{Dryland Genetics LLC}\hfill2014-Present\\
\textit{Using high throughput quantitative genetics and field phenotyping techologies to develop and commericialize higher yielding cultivars of crops already naturally adapted to using little water and growing arid regions where conventional agriculture fails in the absence of irrigation.}
\item Co-Founder, \href{https://www.data2bio.com/}{Data2Bio LLC} (USA) \& \begin{CJK*}{UTF8}{gbsn}DATA生物科技(北京)有限公司\end{CJK*} (China) \hfill2010-Present\\
\textit{Providing patented tGBS genotyping and genomic selection services to public and private sector plant and animal breeders in the USA and China.}
\end{itemize}
\subsection*{Entrepreneurship-Related Funding}
\begin{itemize}
\item NSF (to EnGeniousAg) ``SBIR Phase I: Low-cost in-planta nitrate sensor'' 2019-2020 \$225k
\item USDA (to EnGeniousAg) ``SBIR Phase I: Low-cost field-deployable sensors to monitor nitrate in soil and water.'' 2019-2020 \$100k
\end{itemize}
\subsection*{Industry Cooperation}
\begin{itemize}
\item Scientific Advisory Council, GeneSeek, Inc\hfill2017-Present
\item External Advisor to the Scientific Advisory Board, Indigo Agriculture\hfill2017
\item External Advisor to the Scientific Advisory Board, Syngenta AG\hfill2016
\end{itemize}
\section*{Advising}
\begin{itemize}
\item \textbf{Current Graduate Advisees:}
Hongyu Jin (PhD, Complex Biosystems),
Michael Tross (PhD, Complex Biosystems),
Nate Korth (co-advised, PhD, Food Science),
Fangyi Li (co-advised, PhD, Complex Biosystems),
Kahheetah Barnoskie (co-advised MS, Agronomy \& Horticulture),
Kyle Linders (co-advised MS, Agronomy \& Horticulture)
\item \textbf{Thesis Committees:}
%Abbas Atefi (PhD, Biological Systems Engineering),
Yen Ning Chai (PhD, Agronomy \& Horticulture),
%Waseen Huassain (PhD, Agronomy \& Horticulture),
%Ying Ren (PhD, Agronomy \& Horticulture),
%Mallory Suhr (PhD, Food Science),
Qinnan Yang (PhD, Food Science),
%Ronghao Wang (PhD, Statistics),
%Piyush Pandey (MS, Biological Systems Engineering),
%Thao Yu (MS, Statistics),
J. Preston Hurst (PhD, Agronomy \& Horticulture),
%Leandra Parsons (PhD, Agronomy \& Horticulture),
Rituaj Khound (PhD, Agronomy \& Horticulture),
Sergio Manuel Gabriel Peralta (PhD, Plant Pathology),
Shimin Chen (PhD, Food Science),
Zachery Shomo (PhD, Biochemistry),
Jared Haupt (PhD, Biochemistry),
%Sairam Behera (PhD, Computer Science),
Sarah Johnson (PhD, Agronomy \& Horticulture),
%Michael Meier (PhD, Agronomy \& Horticulture),
Semra Palali (PhD, Agronomy \& Horticulture)
\item \textbf{Graduated Advisees:}
Daniel Carvalho (PhD, Agronomy \& Horticulture),
Zhikai Liang (PhD, Agronomy \& Horticulture),
Chenyong Miao (PhD, Agronomy \& Horticulture),
Preston Hurst (MS, Agronomy \& Horticulture),
Xianjun Lai (PhD, Sichuan Agriculture University),
Xiuru Dai (PhD, Shandong Agriculture University),
Santos Yenandy Barrera Lemus (co-advised, PhD, Agronomy \& Horticulture)
Mackenzie Zweiner (MS, Agronomy \& Horticulture),
Bhushit Agarwal (co-advised, MS, Computer Science \& Engineering),
Srinidhi Bashyam (co-advised, MS, Computer Science \& Engineering)
\item \textbf{Undergraduate Researchers:}
7 NSF supported REU (Research Experience for Undergraduates) students;
3 UCARE (Undergraduate Creative Activities and Research Experience) students;
and 36 undergraduate students supported by regular research funding.
\item \textbf{High School Researchers:}
2 students supported through the Young Nebraska Scientist program;
1 supported by regular research funding.
\end{itemize}
\section*{Publications}
\begin{center}
\textbf{H-Index:} \textbf{\href{https://scholar.google.com/citations?user=cik4JVYAAAAJ}{36}} \\
Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$undergraduate author, $^\S$corresponding author
\end{center}
%Figure out how to emphasis italics stuff more.
\addtolength{\leftskip}{9mm}
\subsection*{Preprints}
\noindent \textbf{Mural RV}, \textbf{Sun G}, \textbf{Grzybowski M}, \textbf{Tross MC}, \textbf{Jin H}, \textbf{Smith C}, Newton L, Andorf CM, Woodhouse MR, Thompson AM, \textbf{Sigmon B}, \textbf{Schnable JC}$^\S$ Association mapping across a multitude of traits collected in diverse environments identifies pleiotropic loci in maize. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.02.25.480753}{10.1101/2022.02.25.480753}\\
\noindent \textbf{Sun G}, Wase N, Shu S, Jenkins J, Zhou B, Chen C, Sandor L, Plott C, Yoshinga Y, Daum C, Qi P, Barry K, Lipzen A, Berry L, Gottilla T, \textbf{Foltz A}, Yu H, O'Malley R, Zhang C, Devos KM, \textbf{Sigmon B}, Yu B, Obata T, Schmutz J$^\S$, \textbf{Schnable JC}$^\S$ Genome sequence of \textit{Paspalum vaginatum} indicates trehalose may act as a conserved trigger for increased nitrogen use efficiency in grasses. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.08.18.456832}{10.1101/2021.08.18.456832} \\
\noindent Yang Q, Van Haute M, \textbf{Korth N}, Sattler S, Toy J, Rose D, \textbf{Schnable JC}, Benson A$^\S$ Complex trait analysis of human gut microbiome-active traits in \textit{Sorghum bicolor}: a new category of human health traits in food crops. \textsc{Research Square} doi: \href{https://doi.org/10.21203/rs.3.rs-1490527/v1}{10.21203/rs.3.rs-1490527/v1}
\noindent Xu G, Lyu J, Obata T, Liu S, Ge Y, \textbf{Schnable JC}, Yang J$^\S$ A historically balanced locus under recent directional selection in responding to changed nitrogen conditions during modern maize breeding. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.02.09.479784}{10.1101/2022.02.09.479784}\\
\noindent \textbf{Sun G}, Yu H, Wang P, Lopez-Guerrero MG, \textbf{Mural RV}, \textbf{Mizero ON}, \textbf{Grzybowski M}, Song B, van Dijk K, Schachtman DP, Zhang C, \textbf{Schnable JC}$^\S$ A role for heritable transcriptomic variation in maize adaptation to temperate environments. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.01.28.478212}{10.1101/2022.01.28.478212}\\
\noindent Boatwright JL, Sapkota S, \textbf{Jin H}, \textbf{Schnable JC}, Brenton Z, Boyles R, Kresovich S$^\S$ Sorghum Association Panel whole-genome sequencing establishes pivotal resource for dissecting genomic diversity. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.12.22.473950}{10.1101/2021.12.22.473950}\\
\noindent Meier MA, Xu G, Lopez-Guerrero MG, Li G, \textbf{Smith C}, \textbf{Sigmon B}, Herr JR, Alfano J, Ge Y, \textbf{Schnable JC}, Yang J$^\S$ Maize root-associated microbes likely under adaptive selection by the host to enhance phenotypic performance. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.11.01.466815}{10.1101/2021.11.01.466815}\\
\noindent \textbf{Miao C}, \textbf{Hoban TP}$^\ddagger$, \textbf{Pages A}$^\ddagger$, Xu Z, Rodene E, Ubbens J, Stavness I, Yang J, \textbf{Schnable JC}$^\S$ Simulated plant images improve maize leaf counting accuracy. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/706994}{10.1101/706994} \\
\noindent Zhang Z$^\S$, Chen C, Rutkoski J, \textbf{Schnable JC}, Murray S, Wang L, Jin X, Stich B, Crossa J, Hayes B. Harnessing Agronomics Through Genomics and Phenomics in Plant Breeding: A Review. \textsc{preprints.org} doi: \href{https://www.preprints.org/manuscript/202103.0519/v1}{10.20944/preprints202103.0519.v1}
\subsection*{Other Manuscripts in Review}
%\noindent Wang M, Shilo S, Levy AA, Zelkowski M, Olson MA, Jiang J, \textbf{Schnable JC}, Sun Q, Pillardy J, Kianian PMA, Kianian SF, Chen C, Pawlowski WP$^\S$ Elucidating features and evolution of recombination sites in plants using machine learning. \textit{(In Review)} \\
%\noindent \textbf{Korth N}, Parsons L, Van Haute M, Yang Q, Hurst JP, \textbf{Schnable JC}, Holding DR, Benson AK$^\S$ Identification of substrates from quality protein popcorn that promote growth of specific beneficial bacteria in the human gut microbiome. \textit{(In Review)}\\
%\noindent Yang Q, Van Haute M, \textbf{Korth N}, Sattler S, Toy J, \textbf{Schnable KC}, Benson AK$^\S$ Complex Trait Analysis of Human Gut Microbiome-Active Traits (MATs) in Sorghum bicolor: a new approach for genetic analysis of human health traits in food crops. \textit{(In Review)}\\
\noindent Kusmec A, Yeh CT, AlKhalifa N ... \textbf{Schnable JC} (26th of 38 authors) ... Willis DM, Wisser RJ, Schnable PS$^\S$ Data-driven identification of environmental variables influencing phenotypic plasticity to facilitate breeding for future climates: a case study involving grain yield of hybrid maize. \textit{(In Review)}\\
\noindent Chen J, Wang Z, Tan K, Huang W, Shi J, Li T, Hu J, Wang K, Xin B, Zhao H, Song W, Hufford MB, \textbf{Schnable JC}, Ware DH, Jin W, Lai J$^\S$ A complete telomere-to-telomere assembly of the genome of maize. \textit{(In Review)}
\begin{etaremune}
\subsection*{Faculty Publications}
\item Rodene E, Xu G, Delen SP, \textbf{Smith C}, Ge Y, \textbf{Schnable JC}, Yang J$^\S$ A UAV-based high-throughput phenotyping approach to assess time-series nitrogen responses and identify traits associated genetic components in maize. \textsc{The Plant Phenome Journal} doi: \href{https://doi.org/10.1002/ppj2.20030}{10.1002/ppj2.20030} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.05.24.445447}{10.1101/2021.05.24.445447}
\item Yu H, Sandhu J, \textbf{Sun G}, Nguyen H, Clemente T, \textbf{Schnable JC}, Walia H, Xie W, Yu B, Mower JP, Zhang C$^\S$ (2022) Pervasive misannotation of the smallest microexons that are evolutionarily conserved and crucial for gene function in plants. \textsc{Nature Communications} doi: \href{https://doi.org/10.1038/s41467-022-28449-8}{10.1038/s41467-022-28449-8}
\item \textbf{Tross MC}$\ddagger$, Gaillard M, \textbf{Zweiner M}$\ddagger$, \textbf{Miao C}, \textbf{Grove RJ}, Li B, Benes B, \textbf{Schnable JC}$^\S$ (2021) 3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves. \textsc{PeerJ} doi: \href{https://doi.org/10.7717/peerj.12628}{10.7717/peerj.12628} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.06.15.448566}{10.1101/2021.06.15.448566}
\item Diao X$^\S$, Zhang H, Tang S, \textbf{Schnable JC}, He Q, Gao Y, Luo M, Jia G, Feng B, Zhi H (2021) Genome-Wide DNA polymorphism analysis and molecular marker development of Setaria italica variety 'SSR41' and application in positional cloning of Setaria white leaf sheath gene SiWLS1. \textsc{Frontiers in Plant Science} doi: \href{https://doi.org/10.3389/fpls.2021.743782}{/10.3389/fpls.2021.743782}
\item \textbf{Miao C}, \textbf{Guo A}$^\ddagger$, Thompson AM, Yang J, Ge Y, \textbf{Schnable JC}$^\S$ (2021) Automation of leaf counting in maize and sorghum using deep learning. \textsc{The Plant Phenome Journal} doi: \href{https://doi.org/10.1002/ppj2.20022}{10.1002/ppj2.20022} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.10.27.355495}{10.1101/2020.12.19.423626}
\item \textbf{Sun G}$^\S$, \textbf{Mural RV}, \textbf{Turkus JD}, \textbf{Schnable JC} (2021) Quantitative resistance loci to southern rust mapped in a temperate maize diversity panel. \textsc{Phytopathology} doi: \href{https://doi.org/10.1094/PHYTO-04-21-0160-R}{10.1094/PHYTO-04-21-0160-R} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.04.02.438220}{10.1101/2021.04.02.438220}
\item \textbf{Mural RV}, \textbf{Grzybowski M}, \textbf{Miao C}, \textbf{Damke A}$^\ddagger$, Sapkota S, Boyles RE, Salas Fernandez MG, Schnable PS, \textbf{Sigmon B}, Kresovich S, \textbf{Schnable JC}$^\S$ (2021) Meta-analysis identifies pleiotropic loci controlling phenotypic trade-offs in sorghum. \textsc{Genetics} doi: \href{https://doi.org/10.1093/genetics/iyab087}{10.1093/genetics/iyab087} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.10.27.355495}{10.1101/2020.10.27.355495}
\item \textbf{Grzybowski M}, Wijewardane NK, Atefi A, Ge Y, \textbf{Schnable JC}$^\S$ (2021) The potential of hyperspectral reflectance as a tool for quantitative genetics in crops. \textsc{Plant Communications} doi: \href{https://doi.org/10.1016/j.xplc.2021.100209}{10.1016/j.xplc.2021.100209}
\item Zhou Y, Kusmec A, Mirnezami SV, Srinivasan L, Jubery TZ, \textbf{Schnable JC}, Salas-Fernandez MG, Nettleton D, Ganapathysubramanian B, Schnable PS$^\S$ (2021) Identification and utilization of genetic determinants of trait measurement errors in image-based, high-throughput phenotyping. \textsc{The Plant Cell} doi: \href{https://doi.org/10.1093/plcell/koab134}{10.1093/plcell/koab134}
\item Atefi A, Ge Y$^\S$, Pitla S, \textbf{Schnable JC} (2021) Robotic Technologies for High-Throughput Plant Phenotyping: Reviews and Perspectives. \textsc{Frontiers in Plant Science} doi: \href{https://www.frontiersin.org/articles/10.3389/fpls.2021.611940/}{10.3389/fpls.2021.611940}
\item Alzadjali A, Veeranampalayam-Sivakumar A, Alali MH, Deogun JS, Scott S, \textbf{Schnable JC}, Shi Y$^\S$ (2021) Maize tassel detection from UAV imagery using deep learning. \textsc{Frontiers in Robotics and AI} \href{https://www.frontiersin.org/articles/10.3389/frobt.2021.600410/}{10.3389/frobt.2021.600410}
\item Meier MA, Lopenz-Guerrero MG, Guo M, Schmer MR, Herr JR, \textbf{Schnable JC}, Alfano JR, Yang J$^\S$ (2021) Rhizosphere microbiomes in a historical maize/soybean rotation system respond to host species and nitrogen fertilization at genus and sub-genus levels. \textsc{Applied and Environmental Microbiology} doi: \href{https://doi.org/10.1128/AEM.03132-20}{10.1128/AEM.03132-20} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.10.244384}{10.1101/2020.08.10.244384}
\item Serb DD, \textbf{Meng X}, \textbf{Schnable JC}, Bashir E, Michaud JP, Vara Prasad PV, Perumal R (2021) Comparative transcriptome analysis reveals genetic mechanisms of sugarcane aphid resistance in grain sorghum. \textsc{International Journal of Molecular Sciences} doi: \href{https://doi.org/10.3390/ijms22137129}{10.3390/ijms22137129}
\item Hurst JP, \textbf{Schnable JC}, Holding DR$^\S$ (2021) Tandem duplicate expression patterns are conserved between maize haplotypes of the $\alpha$-zeingene family. \textsc{Plant Direct} doi: \href{https://doi.org/10.1002/pld3.346}{10.1002/pld3.346}
\item Busta L, Schmitz E, Kosma D, \textbf{Schnable JC}, Cahoon EB$^\S$ (2021) A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry. \textsc{Proceedings of the National Academy of Sciences of the United States of America} doi: \href{https://doi.org/10.1073/pnas.2022982118}{10.1073/pnas.2022982118}
\item \textbf{Meng X}, \textbf{Liang Z}, \textbf{Dai X}, \textbf{Zhang Y}, Mahboub S, \textbf{Ngu DW}$^\ddagger$, Roston RL, \textbf{Schnable JC}$^\S$ (2021) Predicting transcriptional responses to cold stress across plant species. \textsc{Proceedings of the National Academy of Sciences of the United States of America}. doi: \href{https://doi.org/10.1073/pnas.2026330118}{10.1073/pnas.2026330118} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.25.266635}{10.1101/2020.08.25.266635}
\item Sankaran S$^\S$, Marzougui A, \textbf{Hurst JP}, Zhang C, \textbf{Schnable JC}, Shi Y (2021) Can high resolution satellite imagery be used in high-throughput field phenotyping? \textsc{Transactions of the ASABE} doi: \href{https://elibrary.asabe.org/abstract.asp?aid=52080&t=3&redir=aid=52080&confalias=t2&redir=[volume=0&issue=0&conf=t&orgconf=]&redirType=toc_journals.asp&redirType=toc_journals.asp}{10.13031/trans.14197}
\item Zhu Y, Chen Y, Ali Md. A, Dong L, Wang X, Archontoulis SV, \textbf{Schnable JC}, Castellano MJ$^\S$ (2021) Continuous in situ soil nitrate sensors: a comparison with conventional measurements and the value of high temporal resolution measurements. \textsc{Soil Science Society of America Journal} doi: \href{https://doi.org/10.1002/saj2.20226}{10.1002/saj2.20226}
\item \textbf{Lai X}, Bendix C, \textbf{Zhang Y}, \textbf{Schnable JC}, Harmon FG$^\S$ (2021) 72-hour diurnal RNA-seq analysis of fully expanded third leaves from maize, sorghum, and foxtail millet at 3-hour resolution. \textsc{BMC Research Notes} doi: \href{https://doi.org/10.1186/s13104-020-05431-5}{10.1186/s13104-020-05431-5}
\item Rogers AR, Dunne JC, Romay C ... \textbf{Schnable JC} (24th of 39 authors) ... Kaeppler S, De Leon N, Holland JB$^\S$ (2021) The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. \textsc{G3:Genes|Genomes|Genetics} doi: \href{https://doi.org/10.1093/g3journal/jkaa050}{10.1093/g3journal/jkaa050}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} February 2021
\item Jarquin D, de Leon N, Romay C ... \textbf{Schnable JC} (24th of 33 authors) ... Wisser RJ, Xu W, Lorenz A (2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the Genomes to Fields maize project. \textsc{Frontiers in Genetics} doi: \href{https://doi.org/10.3389/fgene.2020.592769}{10.3389/fgene.2020.592769}
\item DiMario RJ, Kophs AN, Pathare VS, \textbf{Schnable JC}, Cousins AB$^\S$ (2021) Phospho\textit{enol}pyruvate carboxylase kinetic variation provides opportunity to enhance C4 photosynthetic efficiency. \textsc{The Plant Journal} doi: \href{https://doi.org/10.1111/tpj.15141}{10.1111/tpj.15141}
\item Thudi M, Palakurthi R, \textbf{Schnable JC}, Chitikineni A, Dreisigacker S, Mace E, Srivastava RK, Satyavathi CT, Odeny D, Tiwari VK, Lam HM, Hong YB, Singh VK, Li G, Xu Y, Chen X, Nguyen H, Sivasankar S, Close TJ, Stein N, Jackson SA, Shubo W, Varshney RK$^\S$ (2021) Genomic resources in plant breeding for sustainable agriculture. \textsc{Journal of Plant Physiology} doi: \href{https://doi.org/10.1016/j.jplph.2020.153351}{10.1016/j.jplph.2020.153351}
\item \textbf{Raju SKK}, Atkins M$^\ddagger$, \textbf{Enerson A}$^\ddagger$, \textbf{Carvalho DS}, Studer AJ, Ganapathysubramanian B, Schnable PS, \textbf{Schnable JC}$^\S$ (2020) Leaf Angle eXtractor - A high throughput image processing framework for leaf angle measurement in maize and sorghum. \textsc{Applications in Plant Sciences} doi: \href{https://doi.org/10.1002/aps3.11385}{10.1002/aps3.11385}
\item Gaillard M$^*$, \textbf{Miao C}$^*$, \textbf{Schnable JC}$^\S$, Benes B$^\S$ (2020) Voxel carving based 3D reconstruction of sorghum identifies genetic determinants of radiation interception efficiency. \textsc{Plant Direct} doi: \href{https://doi.org/10.1002/pld3.255}{10.1002/pld3.255} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.04.06.028605}{10.1101/2020.04.06.028605v1}
\item Raju SKK$^\S$, Thompson AM, \textbf{Schnable JC} (2020) Advances in plant phenomics: From data and algorithms to biological insights. \textsc{Applications in Plant Sciences} doi: \href{https://doi.org/10.1002/aps3.11386}{10.1002/aps3.11386}
\item Atefi A, Ge Y$^\S$, Pitla S, \textbf{Schnable JC} (2020) Robotic detection and grasp of maize and sorghum: stem measurement with contact. \textsc{Robotics} doi: \href{https://doi.org/10.3390/robotics9030058}{10.3390/robotics9030058}
\item Wang R, Qiu Y,$^\S$ Zhou Y, \textbf{Liang Z}, \textbf{Schnable JC} (2020) A high-throughput phenotyping pipeline for image processing and functional growth curve analysis. \textsc{Plant Phenomics} doi: \href{https://doi.org/10.34133/2020/7481687}{10.34133/2020/7481687}
\item \textbf{Lai X}, Bendix C, \textbf{Yan L}, \textbf{Zhang Y}, \textbf{Schnable JC}, Harmon F$^\S$ (2020) Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs. \textsc{BMC Genomics} doi: \href{https://doi.org/10.1186/s12864-020-06824-3}{10.1186/s12864-020-06824-3}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} October 2020
\item Han J, Wang P, Wang Q, Lin Q, Yu G, \textbf{Miao C}, Dao Y, Wu R, \textbf{Schnable JC}, Tang H, Wang K$^\S$ (2020) Genome-wide characterization of DNase I-hypersensitive sites and cold response regulatory landscapes in grasses. \textsc{The Plant Cell} doi: \href{https://doi.org/10.1105/tpc.19.00716}{10.1105/tpc.19.00716}\\
\textbf{\textit{ "In Brief" highlighting this article by SKK Raju}} doi: \href{https://doi.org/10.1105/tpc.20.00471}{10.1105/tpc.20.00471}
\item Moisseyev G, Park K, Cui X, Freitas D, Rajagopa D, Konda A, Martin-Olenski M, Mcham M, Liu K, Du Q, \textbf{Schnable JC}, Moriyama E, Cahoon E, Chi Z$^\S$ (2020) RGPDB: Database of root-associated genes and promoters in maize, soybean, and sorghum. \textsc{Database} doi: \href{https://doi.org/10.1093/database/baaa038}{10.1093/database/baaa038}
\item \textbf{Miao C}, Xu Y, Liu S, Schnable PS, \textbf{Schnable JC}$^\S$ (2020) Increased power and accuracy of causal locus identification in time-series genome-wide association in sorghum. \textsc{Plant Physiology} doi: \href{https://doi.org/10.1104/pp.20.00277}{10.1104/pp.20.00277} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.02.16.951467}{10.1101/2020.02.16.951467}\\
\textbf{\textit{ "News and Views" highlighting this article by Y Yu}} doi: \href{https://doi.org/10.1104/pp.20.00797}{10.1104/pp.20.00797}
\item \textbf{Dai X}, Xu Z, \textbf{Liang Z}, Tu X, Zhong S, \textbf{Schnable JC}$^\S$, Li P$^\S$ (2020) Non-homology based prediction of gene functions. \textsc{The Plant Genome} doi: \href{https://doi.org/10.1002/tpg2.20015}{10.1002/tpg2.20015} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/730473}{10.1101/730473}
\item Peng B, Guan K$^\S$, Ainsworth EA, Asseng S, Bernacchi CJ, Cooper M, Delucia EH, Elliot JW, Ewert F, Grant RF, Gustafson DI, Hammer GL, Jin Z, Jones JW, Kimm H, Lawrence DM, Li Y, Lombardozzi DL, Marshall-Colon A, Messina CD, Ort DR, \textbf{Schnable JC}, Tang J, Vallejos CE, Wu A, Yin X, Zhou W (2020) Advancing multi-scale crop modeling for agricultural climate change adaptation assessment. \textsc{Nature Plants} doi: \href{https://t.co/rl4ywzzDhy?amp=1}{10.1038/s41477-020-0625-3}
\item Adams J, Qiu Y$^\S$, Xu Y, \textbf{Schnable JC} (2020) Plant segmentation by supervised machine learning methods. \textsc{The Plant Phenome Journal} doi: \href{http://dx.doi.org/10.1002/ppj2.20001}{10.1002/ppj2.20001}
\item \textbf{Liang Z}, Qiu Y, \textbf{Schnable JC}$^\S$ (2020) Distinct characteristics of genes associated with phenome-wide variation in maize (\textit{Zea mays}). \textsc{Molecular Plant} doi: \href{https://doi.org/10.1016/j.molp.2020.03.003}{10.1016/j.molp.2020.03.003} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/534503}{10.1101/534503}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} May 2020
\item Benes B, Guan K, Lang M, Long S, Lynch J, Marshall-Colon A$^\S$, Peng B, \textbf{Schnable JC}, Sweetlove L, Turk M (2020) Multiscale computational models can guide experimentation and targeted measurements for crop improvement. \textsc{The Plant Journal} doi: \href{https://doi.org/10.1111/tpj.14722}{10.1111/tpj.14722}
\item McFarland BA, AlKhalifah N, Bohn ... \textbf{Schnable JC} (34 of 54 authors) ... Xu W, Yeh CT, de Leon N$^\S$ (2020) Maize Genomes to Fields (G2F): 2014 –2017 field seasons' genotype, phenotype, climatic, soil and inbred ear image datasets. \textsc{BMC Research Notes} doi: \href{https://doi.org/10.1186/s13104-020-4922-8}{10.1186/s13104-020-4922-8}
\item \textbf{Carvalho DS}, \textbf{Nishimwe AV}$^\ddagger$, \textbf{Schnable JC}$^\S$ (2020) IsoSeq transcriptome assembly of C3 panicoid grasses provides tools to study evolutionary change in the Panicoideae. \textsc{Plant Direct} \href{https://doi.org/10.1002/pld3.203}{10.1002/pld3.203} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/689356}{10.1101/689356}
\item \textbf{Miao C}, \textbf{Pages A}$^\ddagger$, Xu Z, Rodene E, Yang J, \textbf{Schnable JC}$^\S$ (2020) Semantic segmentation of sorghum using hyperspectral data identifies genetic associations. \textsc{Plant Phenomics} doi: \href{https://doi.org/10.34133/2020/4216373}{10.34133/2020/4216373}
\item Jarquin D$^\S$, Howard R, \textbf{Liang Z}, Gupta SK, \textbf{Schnable JC}, Crossa J (2020) Enhancing hybrid prediction in pearl millet using genomic and/or multi-environment phenotypic information of inbreds. \textsc{Frontiers in Genetics} doi: \href{https://doi.org/10.3389/fgene.2019.01294}{10.3389/fgene.2019.01294}
\item Zheng Z, Hey S, Jubery T, Liu T, Yang Y, Coffey L, \textbf{Miao C}, \textbf{Sigmon B}, \textbf{Schnable JC}, Hochholdinger F, Ganapathysubramanian B, Schnable PS$^\S$ (2020) Shared genetic control of root system architecture between \textit{Zea mays} and \textit{Sorghum bicolor}. \textsc{Plant Physiology} doi: \href{https://doi.org/10.1104/pp.19.00752}{10.1104/pp.19.00752}
\item Qi P, Eudy D, \textbf{Schnable JC}, Schmutz J, Raymer P, Devos KM$^\S$ (2019) High density genetic maps of seashore paspalum using genotyping-by-sequencing and their relationship to the \textit{Sorghum bicolor} genome. \textsc{Scientific Reports} doi: \href{https://doi.org/10.1038/s41598-019-48257-3}{10.1038/s41598-019-48257-3}
\item \textbf{Schnable JC}$^\S$ (2019) Genes and gene models, an important distinction. \textsc{New Phytologist} doi: \href{https://doi.org/10.1111/nph.16011}{10.1111/nph.16011}\\
\textbf{\textit{Commissioned Material: Tansley Insight Medal}}
\item Ge Y$^\S$, Atefi A, Zhang H, \textbf{Miao C}, Ramamurthy RK, \textbf{Sigmon B}, Yang J, \textbf{Schnable JC} (2019) High-throughput analysis of leaf physiological and chemical traits with VIS-NIR-SWIR spectroscopy: A case study with a maize diversity panel. \textsc{Plant Methods} doi: \href{https://doi.org/10.1186/s13007-019-0450-8}{10.1186/s13007-019-0450-8}
\item Ali MA, Wang X, Chen Y, Jiao Y, Mahal NK, Satyanarayana M, Castellano MJ, \textbf{Schnable JC}, Schnable PS, Dong L$^\S$ (2019) Continuous Monitoring of Nitrate Variation Using Miniature Soil Sensor with Poly(3-octyl-thiophene) and Molybdenum Disulfide Nanocomposite. \textsc{ACS Applied Materials \& Interfaces} doi: \href{https://doi.org/10.1021/acsami.9b07120}{10.1021/acsami.9b07120}
\item Li Y, \textbf{Li D}, Jiao Y, \textbf{Schnable JC}, Li Y, Li H, Chen H, Hong H, Zhang T, Liu B, Liu Z, You Q, Tian Y, Gou Y, Guan R, Zhang L, Chang R, Zhang Z, Reif J, Zhou X, Schnable PS, Qiu L.$^\S$ (2019) Identification of Loci Controlling Adaptation in Chinese Soybean Landraces via a Combination of Conventional and Bioclimatic GWAS. \textsc{Plant Biotechnology Journal} doi: \href{https://doi.org/10.1111/pbi.13206}{10.1111/pbi.13206}
\item Atefi A, Ge Y,$^\S$ Pitla S, \textbf{Schnable JC} (2019) \textit{In vivo} human-like robotic phenotyping of leaf traits in maize and sorghum. \textsc{Computers and Electronics in Agriculture} doi: \href{https://doi.org/10.1016/j.compag.2019.104854}{10.1016/j.compag.2019.104854}
\item Li L, Li X, Li L, \textbf{Schnable JC}, Gu R, J Wang$^\S$ (2019) QTL identification and epistatic effect analysis of seed size- and weight-related traits in \textit{Zea mays} L. \textsc{Molecular Breeding} doi: \href{https://doi.org/10.1007/s11032-019-0981-8}{10.1007/s11032-019-0981-8}
\item \textbf{Yan L}, \textbf{Kumar SKK}, \textbf{Lai X}, \textbf{Zhang Y}, \textbf{Dai X}, Rodriguez O, Mahboub S, Roston RL, \textbf{Schnable JC}$^\S$ (2019) Parallels between artificial selection in temperate maize and natural selection in the cold-adapted crop-wild relative Tripsacum. \textsc{The Plant Journal} doi: \href{https://doi.org/10.1111/tpj.14376}{10.1111/tpj.14376} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/187575}{10.1101/187575}
\item Bai G, Ge Y,$^\S$ Scoby D, Leavit B, Irmak S, Graef G, \textbf{Schnable JC}, Awada T. (2019) NU-Spidercam: A large-scale, cable-driven, integrated sensing and robotic system for precision phenotyping, remote sensing, and agronomic research. \textsc{Computers and Electronics in Agriculture} doi: \\ \href{https://doi.org/10.1016/j.compag.2019.03.009}{10.1016/j.compag.2019.03.009}
\item Zou C, Miki D, \textbf{Li D}, Tang Q, Xiao L, \textbf{Rajput S}, Deng P, Peng L, Huang R, Zhang M, Sun Y, Hu J, Fu X, Schnable P, Li F, Zhang H, Feng B, Zhu X, Liu R, \textbf{Schnable JC}, Zhu JK, Zhang H$^\S$ (2019) The genome of broomcorn millet. \textsc{Nature Communications} doi: \href{https://doi.org/10.1038/s41467-019-08409-5}{10.1038/s41467-019-08409-5}
\item \textbf{Miao C}, \textbf{Yang, J}, \textbf{Schnable JC}$^\S$ (2018) Optimizing the identification of causal variants across varying genetic architectures in crops. \textsc{Plant Biotechnology Journal} doi: \href{https://doi.org/10.1111/pbi.13023}{10.1111/pbi.13023} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/310391}{10.1101/310391}
\item Ott A, \textbf{Schnable JC}, Yeh CT, Wu L, Liu C, Hu HC, Dolgard CL, Sarkar S, Schnable PS$^\S$ (2018) Linked read technology for assembling large complex and polyploid genomes. \textsc{BMC Genomics} doi: \href{https://doi.org/10.1186/s12864-018-5040-z}{10.1186/s12864-018-5040-z}
\item Liu S,$^*$ \textbf{Schnable JC},$^*$ Ott A,$^*$ Yeh CT, Springer NM, Yu J, Meuhbauer G, Timmermans MCP, Scanlon MJ, Schnable PS$^\S$ (2018) Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels. \textsc{Molecular Biology and Evolution} doi: \href{https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy174/5090457?guestAccessKey=0823f03f-550f-40ac-9f4b-1c3670490e94}{10.1093/molbev/msy174}
\item \textbf{Raju SKK}, Barnes A, \textbf{Schnable JC}, Roston RL$\S$ (2018) Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? \textsc{Plant Science} doi: \href{https://doi.org/10.1016/j.plantsci.2018.08.002}{10.1016/j.plantsci.2018.08.002}
\item \textbf{Miao C}, Fang J, Li D, Liang P, Zhang X, \textbf{Yang J}, \textbf{Schnable JC}, Tang H$\S$ (2018) Genotype-Corrector: improved genotype calls for genetic mapping. \textsc{Scientific Reports} doi: \href{https://doi.org/10.1038/s41598-018-28294-0}{10.1038/s41598-018-28294-0}
\item Alkhalifah N, Campbell DA, Falcon CM, ... \textbf{Schnable JC} (31 of 44 authors) ... Spalding EP, Edwards J, Lawrence-Dill CJ$^\S$ (2018) Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets. \textsc{BMC Research Notes} doi: \href{https://doi.org/10.1186/s13104-018-3508-1}{10.1186/s13104-018-3508-1}
\item \textbf{Liang Z}, Gupta SK, Yeh CT, \textbf{Zhang Y}, \textbf{Ngu DW},$^\ddagger$ Kumar R, Patil HT, Mungra KD, Yadav DV, Rathore A, Srivastava RK, Gupkta R, \textbf{Yang J}, Varshney RK, Schnable PS, \textbf{Schnable JC}$^\S$ (2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. \textsc{G3: Genes Genomes Genetics} doi: \href{https://doi.org/10.1534/g3.118.200242}{10.1534/g3.118.200242}\\
\textbf{\textit{Selected as the outstanding scientific article of 2018 by ICRISAT's research program in Asia.}}
\item Xu Y, Qiu Y, \textbf{Schnable JC}$^\S$ (2018) Functional modeling of plant growth dynamics. \textsc{The Plant Phenome Journal} doi: \href{https://doi.org/10.2135/tppj2017.09.0007}{10.2135/tppj2017.09.0007} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/190967}{10.1101/190967}\\
\textbf{\textit{Recieved the "Outstanding Paper Award" from TPPJ editorial board in 2020.}}
\item \textbf{Carvalho DS}, \textbf{Schnable JC}, Almeida AMR$^\S$ (2018) Integrating phylogenetic and network approaches to study gene family evolution: the case of the AGAMOUS family of floral genes. \textsc{Evolutionary Bioinformatics} doi: \href{https://doi.org/10.1177/1176934318764683}{10.1177/1176934318764683} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/195669}{10.1101/195669}
\item \textbf{Lai X}, \textbf{Yan L}, Lu Y, \textbf{Schnable JC}$^\S$ (2018) Largely unlinked gene sets targeted by selection for domestication syndrome phenotypes in maize and sorghum. \textsc{The Plant Journal} doi: \href{https://doi.org/10.1111/tpj.13806}{10.1111/tpj.13806} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/184424}{10.1101/184424}
\item \textbf{Liang Z}, \textbf{Schnable JC}$^\S$ (2017) Functional divergence between subgenomes and gene pairs after whole genome duplications. \textsc{Molecular Plant} doi: \href{http://doi.org/10.1016/j.molp.2017.12.010}{10.1016/j.molp.2017.12.010}
\item \textbf{Liang Z}, Pandey P, Stoerger V, Xu Y, Qiu Y, Ge Y, \textbf{Schnable JC}$^\S$ (2017) Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. \textsc{GigaScience} doi: \href{https://academic.oup.com/gigascience/advance-article/doi/10.1093/gigascience/gix117/4656251?guestAccessKey=71c1c32f-78fd-42c0-99a3-38e6c4fd8100}{10.1093/gigascience/gix117} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/169045}{10.1101/169045}
\item Gage J, Jarquin D, Romay M, ... \textbf{Schnable JC} (29th of 40 authors) ... Yu J, de Leon N$^\S$ (2017) The effect of artificial selection on phenotypic plasticity in maize. \textsc{Nature Communications} doi: \href{https://doi.org/10.1038/s41467-017-01450-2}{10.1038/s41467-017-01450-2}\\
\textbf{\textit{Selected as an Editor's Choice by MaizeGDB Editorial Board}} December 2017
\item Washburn JD, {\bf Schnable JC}, Brutnell TP, Shao Y, {\bf Zhang Y}, Ludwig M, Davidse G, Pires JC$^\S$ (2017) Genome-guided phylo-transcriptomic methods and the nuclear phylogentic tree of the paniceae grasses. \textsc{Scientific Reports} doi: \href{https://doi.org/10.1038/s41598-017-13236-z}{10.1038/s41598-017-13236-z}
\item Ott A,$^*$ Liu S,$^*$ \textbf{Schnable JC}, Yeh CT, Wang C, Schnable PS$^\S$ (2017) Tunable Genotyping-By-Sequencing (tGBS\textregistered) enables reliable genotyping of heterozygous loci. \textsc{Nucleic Acids Research} doi: \\ \href{https://academic.oup.com/nar/article/doi/10.1093/nar/gkx853/4210942/tGBS-genotypingbysequencing-enables-reliable?guestAccessKey=0ba723ae-c6b2-4d7f-841e-cd46b4bf68f9}{10.1093/nar/gkx853}
\item \textbf{Lai X}, \textbf{Schnable JC}, Liao Z, Xu J, Zhang G, Li C, Hu E, Rong T, Xu Y, Lu Y$^\S$ (2017) Genome-wide characterization of non-reference transposable elements insertion polymorphisms reveals genetic diversity in tropical and temperate maize. \textsc{BMC Genomics} doi: \href{https://doi.org/10.1186/s12864-017-4103-x}{10.1186/s12864-017-4103-x}
\item Mei W, Boatwright L, Feng G, \textbf{Schnable JC}, Barbazuk WB$^\S$ (2017) Evolutionarily conserved alternative splicing across monocots. \textsc{Genetics} doi: \href{https://doi.org/10.1534/genetics.117.300189}{10.1534/genetics.117.300189}\\
\textbf{\textit{Cover Article October 2017 Issue}}
\item Pandey P, Ge Y$^\S$, Stoerger V, \textbf{Schnable JC} (2017) High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. \textsc{Frontiers in Plant Science} doi \href{http://dx.doi.org/10.3389/fpls.2017.01348}{10.3389/fpls.2017.01348}
\item \textbf{Zhang Y}, \textbf{Ngu DW},$^\ddagger$ \textbf{Carvalho D}, \textbf{Liang Z}, Qiu Y, Roston RL, \textbf{Schnable JC}$^\S$ (2017) Differentially regulated orthologs in sorghum and the subgenomes of maize. \textsc{The Plant Cell} doi: \href{https://doi.org/10.1105/tpc.17.00354}{10.1105/tpc.17.00354} \\
\textbf{\textit{Selected as an Editor's Choice by MaizeGDB Editorial Board}} August 2017
\item {\bf Lai X},$^*$ Behera S,$^*$ {\bf Liang Z}, Lu Y, Deogun JS, {\bf Schnable JC}$^\S$ (2017) STAG-CNS: An order-aware conserved noncoding sequence discovery tool for arbitrary numbers of species. \textsc{Molecular Plant}. doi: \href{http://dx.doi.org/10.1016/j.molp.2017.05.010}{10.1016/j.molp.2017.05.010}
\item {\bf Lai X}, {\bf Schnable JC}$^\S$ (2017) Harnessing the potential of the tea tree genome. \textsc{Molecular Plant}. doi: \href{http://dx.doi.org/10.1016/j.molp.2017.05.009}{10.1016/j.molp.2017.05.009}
\item Mei W, Liu S, \textbf{Schnable JC}, Yeh C, Springer NM, Schnable PS, Barbazuk WB$^\S$ (2017) A comprehensive analysis of alternative splicing in paleopolyploid maize. \textsc{Frontiers in Plant Science} doi: \href{http://dx.doi.org/10.3389/fpls.2017.00694}{10.3389/fpls.2017.00694}
\item Joyce BL, Huag-Baltzell A, Davey S, Bomhoff M, {\bf Schnable JC}, Lyons E$^\S$ (2016) FractBias: a graphical tool for assessing fractionation bias after whole genome duplications. \textsc{Bioinformatics} doi: \href{http://dx.doi.org/10.1093/bioinformatics/btw666}{10.1093/bioinformatics/btw666}
\item Walley JW,$^*$ Sartor RC,$^*$ Shen Z, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, \textbf{Schnable JC}, Ecker JR, Briggs SP$^\S$ (2016) Integration of omic networks in a developmental atlas of maize. \textsc{Science} doi: \href{http://dx.doi.org/10.1126/science.aag1125}{10.1126/science.aag1125}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} September 2016
\item Ge Y$^\S$, Bai G, Stoerger V, {\bf Schnable JC} (2016) Temporal dynamics of maize plant growth, water use, and plant water content using automated high throughput RGB and hyperspectral imaging. \textsc{Computers and Electronics in Agriculture} doi: \href{http://dx.doi.org/10.1016/j.compag.2016.07.028}{10.1016/j.compag.2016.07.028}
\item {\bf Liang Z}, {\bf Schnable JC}$^\S$ (2016) RNA-seq based analysis of population structure within the maize inbred B73. \textsc{PLoS One} doi: \href{http://dx.doi.org/10.1371/journal.pone.0157942}{10.1371/journal.pone.0157942}
\item Rajput SG, Santra DK$^\S$, {\bf Schnable JC} (2016) Mapping QTLs for morpho-agronomic traits in proso millet ( \textit {Panicum miliaceum} L.). \textsc{Molecular Breeding} doi: \href{http://dx.doi.org/10.1007/s11032-016-0460-4}{10.1007/s11032-016-0460-4}
\item Chao S, Wu J, Liang J, {\bf Schnable JC}, Yang W, Cheng F, Wang X$^\S$ (2016) Impacts of whole genome triplication on MIRNA evolution in \textit {Brassica rapa}. \textsc {Genome Biology and Evolution} doi: \\ \href{http://dx.doi.org/10.1093/gbe/evv206}{10.1093/gbe/evv206}
\item Tang H, Bomhoff MD, Briones E, {\bf Schnabe JC}, Lyons E$^\S$ (2015) SynFind: compiling syntenic regions across any set of genomes on demand. \textsc {Genome Biology and Evolution} doi: \href{http://dx.doi.org/10.1093/gbe/evv219}{10.1093/gbe/evv219}
\item Washburn JD, {\bf Schnable JC}, Davidse G, Pires JC$^\S$ (2015) Phylogeny and photosynthesis of the grass tribe Paniceae. \textsc {American Journal of Botany} doi: \href{http://dx.doi.org/10.3732/ajb.1500222}{10.3732/ajb.1500222}
\item Tang H, Zhang X, {\bf Miao C}, Zhang J, Ming R, {\bf Schnable JC}, Schnable PS, Lyons E, Lu J$^\S$ (2015) ALLMAPS: robust scaffold ordering based on multiple maps. \textsc {Genome Biology} doi: \href{http://dx.doi.org/10.1186/s13059-014-0573-1}{10.1186/s13059-014-0573-1}
\item {\bf Schnable JC}$^\S$ (2015) Genome evolution in maize: from genomes back to genes. \textsc {Annual Review of Plant Biology} doi: \href{http://dx.doi.org/10.1146/annurev-arplant-043014-115604}{10.1146/annurev-arplant-043014-115604}
\item Paschold A, Larson NB, Marcon C, {\bf Schnable JC}, Yeh C, Lanz C, Nettleton D, Piepho H, Schnable PS, Hochholdinger F$^\S$ (2014) Nonsyntenic genes drive highly dynamic complementation of gene expression in maize hybrids. \textsc {Plant Cell} doi: \href{http://dx.doi.org/10.1105/tpc.114.130948}{10.1105/tpc.114.130948}
\subsection*{Postdoctoral Publications}
\item Weissmann S, Huang P, Wiechert M, Furoyama K, Brutnell TP, Taniguchi M, \textbf{Schnable JC},$^\S$ Mockler TC$^\S$ (2021) DCT4 - a new member of the dicarboxylate transporter family in C\textsubscript{4} grasses. \textsc{Genome Biology and Evolution} doi: \href{https://academic.oup.com/gbe/article/doi/10.1093/gbe/evaa251/6126432?guestAccessKey=1ceb8d04-4e02-4ff3-89b5-705479ae4e47}{10.1093/gbe/evaa251} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/762724}{10.1101/762724}
\item Nani TF, \textbf{Schnable JC}, Washburn JD, Albert P, Pereira WA, Sobrinho FS, Birchler JA, Techia VH$^\S$ (2018). Location of low copy genes in chromosomes of \textit{Brachiaria} spp. \textsc{Molecular Biology Reports} doi: \href{https://doi.org/10.1007/s11033-018-4144-5}{10.1007/s11033-018-4144-5}
\item Studer AJ$^*$, {\bf Schnable JC}$^*$, Weissmann S, Kolbe AR, McKain MR, Shao Y, Cousins AB, Kellogg EA, Brutnell TP$^\S$ (2016) The draft genome of \textit {Dichanthelium oligosanthes}: A C3 panicoid grass species. \textsc{Genome Biology} doi: \href{http://dx.doi.org/10.1186/s13059-016-1080-3}{10.1186/s13059-016-1080-3}
\item Huang P, Studer AJ, {\bf Schnable JC}, Kellogg EA, Brutnell TP$^\S$ (2016) Cross species selection scans identify components of C4 photosynthesis in the grasses. \textsc {Journal of Experimental Botany} doi: \href{http://dx.doi.org/10.1093/jxb/erw256}{10.1093/jxb/erw256}\\
\textbf{\textit{ "Insight" highlighting this article by PA Christin also published in JXB}} doi: \href{https://doi.org/10.1093/jxb/erw390}{10.1093/jxb/erw390}
\item Liu X, Tang S, Jia G, {\bf Schnable JC}, Su X, Tang C, Zhi H, Diao X$^\S$ (2016) The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet [\textit {Setaria italica} (L.) P. Beauv]. \textsc {Journal of Experimental Botany} doi: \href{http://dx.doi.org/10.1093/jxb/erw135}{10.1093/jxb/erw135}
\item Jia G, Liu X, {\bf Schnable JC}, Niu Z, Wang C, Li Y, Wang Sh, Wang Su, Liu J, Gou E, Diao X$^\S$ (2015) Microsatellite variations of elite Setaria varieties released during last six decades in China. \textsc {PLoS One} doi: \href{http://dx.doi.org/10.1371/journal.pone.0125688}{10.1371/journal.pone.0125688}
\item Qie L, Jia G, Zhang W, {\bf Schnable JC}, Shang Z, Li W, Liu B, Li M, Chai, Y, Zhi H, Diao X$^\S$ (2014) Mapping of quantitative trait loci (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross \textit {Setaria italica} x \textit {Setaria viridis}. \textsc {PLoS One} doi: \href{http://dx.doi.org/10.1371/journal.pone.0101868}{10.1371/journal.pone.0101868}
\item Diao X$^\S$, {\bf Schnable JC}, Bennetzen JL, Li J$^\S$ (2014) Initiation of Setaria as a model plant. \textsc {Frontiers of Agricultural Science and Engineering} doi: \href{http://dx.doi.org/10.15302/J-FASE-2014011}{10.15302/J-FASE-2014011}
\subsection*{Graduate Publications}
\item Woodhouse MR$^\S$, Sen S, Schott D, Portwood JL, Walley JL, Andorf CM, \textbf{Schnable JC} (2021) qTeller: A tool for comparative multi-genomic gene expression analysis. \textsc{Bioinformatics} doi: \href{https://doi.org/10.1093/bioinformatics/btab604}{10.1093/bioinformatics/btab604}
\item Cheng F, Sun C, Wu J, {\bf Schnable JC}, Woodhouse MR, Liang J, Cai C, Freeling M,$^\S$ Wang X$^\S$ (2016) Epigenetic regulation of subgenome dominance following whole genome triplication in \textit {Brassica rapa}. \textsc {New Phytologist} doi: \href {http://dx.doi.org/10.1111/nph.13884}{10.1111/nph.13884}
\item Almeida AMR, Yockteng R, {\bf Schnable JC}, Alvarez-Buylla ER, Freeling M, Specht CD$^\S$ (2014) Co-option of the polarity gene network shapes filament morphology in angiosperms. \textsc {Scientific Reports} doi: \href{http://dx.doi.org/10.1038/srep06194}{10.1038/srep06194}
\item Martin JA, Johnson NV, Gross SM, {\bf Schnable JC}, Meng X, Wang M, Coleman-Derr D, Lindquist E, Wei C, Kaeppler S, Chen F, Wang Z$^\S$ (2014) A near complete snapshot of the \textit {Zea mays} seedling transcriptome revealed from ultra-deep sequencing. \textsc {Scientific Reports} doi: \href{http://dx.doi.org/10.1038/srep04519}{10.1038/srep04519} \\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} May 2014
\item Garsmeur O,$^*$ {\bf Schnable JC,}$^*$ Almeida A, Jourda C, D'Hont A,$^\S$ Freeling M$^\S$ (2014) Two evolutionarily distinct classes of paleopolyploidy. \textsc {Molecular Biology and Evolution} doi: \href{http://dx.doi.org/10.1093/molbev/mst230}{10.1093/molbev/mst230}
\item Turco G, {\bf Schnable JC}, Pedersen B, Freeling M$^\S$ (2013) Automated conserved noncoding sequence (CNS) discovery reveals differences in gene content and promoter evolution among the grasses. \textsc {Frontiers in Plant Sciences} doi: \href{http://dx.doi.org/10.3389/fpls.2013.00170}{10.3389/fpls.2013.00170}
\item {\bf Schnable JC}, Wang X, Pires JC, Freeling M$^\S$ (2012) Escape from preferential retention following repeated whole genome duplication in plants. \textsc{Frontiers in Plant Science} doi: \href{http://dx.doi.org/10.3389/fpls.2012.00094}{10.3389/fpls.2012.00094}
\item Freeling M$^\S$, Woodhouse MR, Subramaniam S, Turco G, Lisch D, {\bf Schnable JC} (2012) Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. \textsc {Current Opinion in Plant Biology} doi: \href{http://dx.doi.org/10.1016/j.pbi.2012.01.015}{10.1016/j.pbi.2012.01.015}
\item Tang H$^\S$, Woodhouse MR, Cheng F, {\bf Schnable JC}, Pedersen BS, Conant GC, Wang X, Freeling M, Pires JC (2012) Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. \textsc {Genetics} doi: \href{http://dx.doi.org/10.1534/genetics.111.137349}{10.1534/genetics.111.137349}
\item {\bf Schnable JC}, Freeling M, Lyons E$^\S$ (2012) Genome-wide analysis of syntenic gene deletion in the grasses. \textsc {Genome Biology and Evolution} doi: \href{http://dx.doi.org/10.1093/gbe/evs009}{10.1093/gbe/evs009}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} Dec 2012
\item Zhang W, Wu Y, {\bf Schnable JC,} Zeng Z, Freeling M, Crawford GE, and Jiang J$^\S$ (2012) High-resolution mapping of open chromatin in the rice genome. \textsc{Genome Research} doi: \href{http://dx.doi.org/10.1101/gr.131342.111}{10.1101/gr.131342.111}
\item Eichten SR,$^*$ Swanson-Wagner RA,$^*$ {\bf Schnable JC,} Waters AJ, Hermanson PJ, Liu S, Yeh C, Jia Y, Gendler K, Freeling M, Schnable PS, Vaughn MW, Springer NM$^\S$ (2011) Heritable epigenetic variation among maize inbreds. \textsc {PLoS Genetics} doi: \href{http://dx.doi.org/10.1371/journal.pgen.1002372}{10.1371/journal.pgen.1002372} \\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} Jan 2012\\
\textbf{\textit{ Recommended by Faculty of 1000 }}
\item {\bf Schnable JC}, Lyons E$^\S$ (2011) Comparative genomics with maize and other grasses: from genes to genomes. \textsc {Maydica} 56(1763) 77-93 \href{http://www.schnablelab.org/Pubs/Maydica\_GenesGenomes.pdf}{Link directly to PDF}
\item Tang H, Lyons E, Pedersen B, {\bf Schnable JC}, Paterson AH, Freeling M. (2011) Screening synteny blocks in pairwise genome comparisons through integer programming. \textsc {BMC Bioinformatics} doi: \href{http://dx.doi.org/10.1186/1471-2105-12-102}{10.1186/1471-2105-12-102}
\item {\bf Schnable JC}, Pedersen BS, Subramaniam S, Freeling M$^\S$ (2011) Dose-sensitivity, conserved noncoding sequences and duplicate gene retention through multiple tetraploidies in the grasses. \textsc {Frontiers in Plant Science} doi: \href{http://dx.doi.org/10.3389/fpls.2011.00002}{10.3389/fpls.2011.00002}\\
\textbf{\textit{Commentary by Birchlier and Veitia also published in Frontiers in Plant Science}} doi: \href{http://dx.doi.org/10.3389/fpls.2011.00064}{10.3389/fpls.2011.00064}
\item {\bf Schnable JC}$^\S$, Freeling M (2011) Genes identified by visible mutant phenotypes show increased bias towards one of two maize subgenomes. \textsc {PLoS One} doi: \href{http://dx.doi.org/10.1371/journal.pone.0017855}{10.1371/journal.pone.0017855}
\item {\bf Schnable JC}, Springer NM, Freeling M$^\S$ (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. \textsc {Proceedings of the National Academy of Sciences} doi: \href{http://dx.doi.org/10.1073/pnas.1101368108}{10.1073/pnas.1101368108} \\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} May 2011
\item Woodhouse MR,$^*$ {\bf Schnable JC},$^*$ Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M$^\S$ (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. \textsc {PLoS Biology} doi: \href{http://dx.doi.org/10.1371/journal.pbio.1000409}{10.1371/journal.pbio.1000409}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} August 2010\\
\textbf{\textit{ PLoS Biology Cover Article }}
\textbf{\textit{ Recommended by Faculty of 1000 }}
\item The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. \textsc {Nature} doi: \href{http://dx.doi.org/10.1038/nature08747}{10.1038/nature08747}
\end{etaremune}
\subsection*{Peer Reviewed Conference Papers}
\begin{etaremune}
\item Khan SH, Karkhanis M, Hatasaka B, Tope S, Noh S, Bulbul A, Banerjee A, Ji M, Mastrangelo CH, Kim H, Dalapati R, Zang L, \textbf{Mural RV}, \textbf{Schnable JC}, Kim K (2022) Field deployment of a nanogap gas sensor for crop damage detection. \textsc{35th International Conference on Micro Electro Mechanical Systems Conference (MEMS)} Berlin, Germany doi: \href{https://doi.org/10.1109/MEMS51670.2022.9699614}{10.1109/MEMS51670.2022.9699614}
\item Khan SH, Tope S, Dalpati R, Kim KH, Noh M, Bulbul A, \textbf{Mural RV}, Banerjee A, \textbf{Schnable JC}, Ji M, Mastrango C, Zang L, Kim H (2021) Development of a gas sensor for green leaf volatile detection. \textsc{Transducers 2021} doi: \href{https://doi.org/10.1109/Transducers50396.2021.9495597}{10.1109/Transducers50396.2021.9495597}
\item Gaillard M, \textbf{Miao C}, \textbf{Schnable JC}, Benes B (2020) Sorghum Segmentation by Skeleton Extraction. \textsc{Computer Vision Problems in Plant Phenotyping (CVPPP 2020)} Glasgow, UK
\item Sankaran S, Zhang C, \textbf{Hurst JP}, Marzougui A, Sivakumar ANV, Li J, \textbf{Schnable JC}, Shi Y (2020) Investigating the potential of satellite imagery for high-throughput field phenotyping applications. \textsc{SPIE Defense + Commercial Sensing} California, USA doi: \href{https://doi.org/10.1117/12.2558729}{10.1117/12.2558729}
\item Al-Zadjali A, Shi Y, Scott S, Deogun JS, and \textbf{Schnable JC} (2020) Faster-R-CNN based deep learning for locating corn tassels in UAV imagery. \textsc{SPIE Defense + Commercial Sensing} California, USA doi: \href{https://doi.org/10.1117/12.2560596}{10.1117/12.2560596}
\item \textbf{Miao C}, \textbf{Pages A},$^\ddagger$ Xu Z, \textbf{Schnable JC} (2019) Sorghum organ classification in hyperspectral images using supervised machine learning classification methods. \textsc{Second International Workshop on Machine Learning for Cyber-Agricultural Systems (MLCAS 2019)} Ames, IA, USA
\item \textbf{Askey B},$^\ddagger$ Yang Q, Benson AK, \textbf{Schnable JC} (2019) Computer vision phenotyping of 371 Sorghum bicolor BTx623 x ISC3620C recombinant inbred lines for QTL detection. \textsc{Second International Workshop on Machine Learning for Cyber-Agricultural Systems (MLCAS 2019)} Ames, IA, USA
\item Jiao Y, Wang X, Chen Y, Castellano MJ, \textbf{Schnable JC}, Schnable PS, Dong L (2019) In-planta nitrate detection using insertable plant microsensor. \textsc{20th International Conference on Solid-State Sensors, Actuators and Microsystems} Berlin, Germany doi: \href{https://doi.org/10.1109/TRANSDUCERS.2019.8808527}{10.1109/TRANSDUCERS.2019.8808527}
\item Ali MA, Wang X, Chen Y, Jiao Y, Castellano MJ, \textbf{Schnable JC}, Schnable PS, Dong L (2019) Novel all-solid-state soil nutrient sensor using nanocomposite of poly(3-octyl-thiophene) and molybdenum sulfate. \textsc{20th International Conference on Solid-State Sensors, Actuators and Microsystems} Berlin, Germany doi: \href{https://doi.org/10.1109/TRANSDUCERS.2019.8808341}{10.1109/TRANSDUCERS.2019.8808341}
\item Behera S, Deogun JS, \textbf{Lai X}, \textbf{Schnable JC} (2017) B529 DiCE: Discovery of Conserved Noncoding Sequences Efficiently. \textsc{IEEE BIBM 2017} Kansas City, MO, USA doi: \href{http://doi.org/10.1109/BIBM.2017.8217628}{10.1109/BIBM.2017.8217628}
%\item Nani T, \textbf{Schnable JC}, Washburn J, Albert P, Pereira W, Birchler J, Souza Sobrinho F, Technio V. (2017) Construction of physical maps of chromosomes in brachiaria spp. beginning a journey. \textsc{11th European Cytogenetics Conference} Florence, Italy
\item Chaudhury SD, Steorger V, Samal A, {\bf Schnable JC}, {\bf Liang Z}, Yu J (2016) \href{http://www.schnablelab.org/Pubs/Sruti\_KDD\_FEWS.pdf}{Automated vegetative stage phenotyping analysis of maize plants using visible light images.} \textsc{KDD: Data Science for Food, Energy and Water} San Francisco, CA, USA
\end{etaremune}
%OTHER PUBS
\subsection*{Selected Other Publications}
\begin{etaremune}
\item Clark J, Qiu Y, \textbf{Schnable JC}. (2019) Experimental design for controlled environment high throughput plant phenotyping. High Throughput Plant Phenotyping: Methods and Protocols. Editor: Argelia Lorence Publisher: Springer, New York, NY.
\item Tang H, Lyons E, {\bf Schnable JC} (2013) Early history of the angiosperms. Genomes of Herbaceus Land Plants. Editor: Andrew Paterson Publisher: Academic Press
\item Goff SA, {\bf Schnable JC}, Feldmann KA (2013) The evolution of plant gene and genome sequencing. Genomes of Herbaceous Land Plants Editor: Andrew Paterson Publisher: Academic Press
\item {\bf Schnable JC} and Freeling M (2012) Maize (\textit{Zea mays}) as a model for studying the impact of gene and regulatory sequence loss following whole genome duplication. Polyploidy and Genome Evolution. Editors: Soltis PS \& Soltis DE Publisher: Springer New York, NY
\end{etaremune}
%PROFESSIONAL SERVICE
\addtolength{\leftskip}{-9mm}\section*{Selected Recent Service}
\subsection*{University}
\begin{itemize}
\item Consortium for Integrated Translational Biology (CITB)\hfill2014-Present
\item UNL Faculty Greenhouse Committee\hfill2015-Present
\item Nebraska Food for Health Center Faculty Advisory Committee\hfill2017-Present
\item Department of Agronomy and Horticulture Awards Committee\hfill2019-Present
\item Department of Agronomy and Horticulture Graduate Admissions Committee\hfill2019-Present
\item Biotech Seminar Series Committee\hfill2017-2019
\item Agronomy and Horticulture Faculty Advisory Committee\hfill2017-2019
\item Agronomy and Horticulture Strategic Planning Committee\hfill2018-2019
\item Department of Agronomy and Horticulture Peer Evaluation Committee\hfill2016-2018
\item Search Committee, Nebraska EPSCoR/IDeA Director\hfill2018
\item Organizing Committee \href{https://extension.unl.edu/statewide/panhandle/international-millet-symposium-2018/}{``International Millet Symposium 2018''}\hfill2018
\item Organizing Committee \href{http://nric.nebraska.edu/}{``Predictive Crop Design, Genome to Phenome''}\hfill2017
\item Search Committee, Director of Phenomic Sciences\hfill2017
\item Search Committee, Agricultural Research Division\hfill2016
\item Search Committee, Quantitative Life Sciences Initiative\hfill2016
\item Search Committee, Department of Agronomy and Horticulture \hfill2016
\item Organizing Committee \href{http://www.unl.edu/psi/2015-plant-science-symposium}{``Plant Phenomics: from pixels to traits''}\hfill2015
\end{itemize}
% List search committees, other UNL committees here
\subsection*{Professional}
\begin{itemize}
%find and add other associate editorship
\item \textbf{Associate Editor:} Molecular Plant\hfill2014-Present
\item \textbf{Guest Editor:} The Plant Cell\hfill2019-Present
\item Data Management Subcommittee, Maize Genetics Research Collaboration Network \hfill 2018-Present
\item MaizeGDB Advisory Committee\hfill 2018-Present
\item \textbf{Grant Reviewer:} NSF (panel \& ad hoc), USDA (panel), JGI (panel), Genome British Columbia (ad hoc).
\item \textbf{Peer Reviewer (selected, recent)}:
Bioinformatics,
BMC Genomics,
BMC Plant Biology,
G3: Genes |Genomes|Genetics,
Genome Biology,
Genome Biology \& Evolution,
Heredity,
Journal of Experimental Botany,
JoVE,
Molecular Biology and Evolution,
Molecular Plant,
Nature Communications,
Nature Plants,
New Phytologist,
Nucleic Acids Research,
PeerJ,
Photosynthesis Research,
Physiologia Plantarum,
Plant Cell,
Plant Cell \& Environment,
Plant Direct,
The Plant Genome,
The Plant Journal,
Plant Methods,
Plant Physiology,
PLoS Genetics,
Proceedings of the National Academy of Sciences,
Science
Science Advances
\end{itemize}
%SEMINARS
\section*{Invited Talks:}
\subsection*{At External Institutions}
%\begin{itemize}
% \item Miami University, Oxford, OH, USA \textit{\hfill(Sept. 2019)}
% \item University of Massachusetts Amherst, Oxford, OH, USA\textit{\hfill(Sept. 2019)}
%\end{itemize}
\begin{itemize}
\item California State East Bay, Hayward, CA, USA \hfill 2021 \textit{(Remote, COVID)}
\item University of Missouri, Columbia, MO, USA\hfill2020 \textit{(Remote, COVID)}
\item Rutgers University, New Brunswick, NJ, USA\hfill2020 \textit{(Remote, COVID)}
\item Bayer Crop Science, St. Louis, MO, USA\hfill2020 \textit{(Remote, COVID)}
\item University of Bonn, Bonn, Germany\hfill2020 \textit{(Remote, COVID)}
\item King Abdullah University of Science and Technology, Jeddeh, Saudi Arabia \hfill 2020 \textit{(Remote, COVID)}
\item University of Hawaii, Manoa, HI, USA \textit{(Brewbaker Lecture)} \hfill 2019
\item Miami University, Oxford, OH, USA \hfill 2019
\item University of Massachusetts Amherst, Oxford, OH, USA \hfill 2019
\item Cornell University, Ithaca, NY, USA\hfill2019
\item Research Triangle Park, NC, USA\hfill2018
\item Washington State University, Pullman, WA, USA\hfill2018
\item University of Delaware, Newark, DE, USA\hfill2018
\item Chinese Academy of Agricultural Sciences, Beijing, China\hfill2017
\item Beijing Academy of Agricultural and Forestry Sciences, Beijing, China\hfill2017
\item University of Minnesota, St. Paul, MN, USA\hfill2017
\item Iowa State University, Ames, IA, USA\hfill2017
\item University of Missouri-Columbia, Columbia, MO, USA\hfill2017
\item Kansas State University, Manhattan, KS, USA\hfill2016
\item University of Georgia-Athens, Athens, GA, USA\hfill2016
\item University of California-San Diego, San Diego, CA, USA\hfill2016
\item Chinese Academy of Agricultural Sciences, Beijing, China\hfill2015
\item Beijing Academy of Agricultural and Forestry Sciences, Beijing, China\hfill2015
\item Sichuan Agricultural University, Chengdu, China\hfill2015
\item Huazhong Agricultural University, Wuhan, China\hfill2015
\item Shandong Agricultural University, Tai'an, China\hfill2015
\item Monsanto, St. Louis, MO, USA\hfill2015
\item Henan Agricultural University, Zhengzhou, China\hfill2014
\item Chinese Academy of Tropical Agriculture, Haikou, China\hfill2014
\item Cornell University, Ithaca, NY, USA\hfill2014
\item Interdisciplinary Plant Group Seminar Series, University of Missouri, Columbia, MO, USA\hfill2012
\item Donald Danforth Plant Science Center, St. Louis, MO, USA\hfill2012
\item China Agricultural University, Beijing, China\hfill2012
\item Chinese Academy of Agricultural Sciences, Beijing, China\hfill2012
\item MaizeGDB, Ames, IA, USA\hfill2012
\item University of Arizona, Tucson, AZ, USA\hfill2011
\end{itemize}
\subsection*{At External Conferences}
\begin{center}
\emph{Invited presentations only. Excludes presentations selected based on abstracts or applications.}
\end{center}
\begin{itemize}
%Michigan Plant Science Symposium
%Nexus symposium
\item Molecular Plant Virtual Seminar Series \hfill 2022 \textit{(Remote, COVID)}
\item DIGICROP 2022 \hfill 2022 \textit{(Remote, COVID)}
\item Machine Learning for Cyber-Agricultural Systems (Keynote) \hfill 2021 \textit{(Remote, COVID)}
\item Plant Science Symposium West Africa (Student Organized) \hfill 2021 \textit{(Remote, COVID)}
\item Soybean Breeders Workshop \hfill 2021 \textit{(Remote, COVID)}
\item NAPPN 2021\hfill 2021 \textit{(Remote, COVID)}
\item DIGICROP 2020\hfill 2020 \textit{(Remote, COVID)}
\item National Association of Plant Breeders Annual Meeting, Lincoln, NE, USA\hfill 2020 \textit{(Remote, COVID)}
\item iGenomX Session, Plant and Animal Genome, San Diego, CA, USA\hfill2020
\item Systems Biology and Ontologies Session, Plant and Animal Genome, San Diego, CA, USA\hfill2020
\item Guelph Plant Sciences Symposium (Student Organized), Guelph, Ontario, Canada\hfill2019
\item Future of Machine Learning for Cyber-Agricultural Systems Panel, Ames, IA, USA\hfill2019
\item Gene Mapping Session, Plant and Animal Genome, San Diego, CA, USA\hfill2019
\item Plant Energy Biology Forum, Perth, Australia\hfill2018
\item The Plant Phenome Journal Webinar Series\hfill2018
\item Entrepreneurship Panel, USDA FACT: Genomes to Fields, Ames, IA, USA\hfill2018
\item Plant Phenotype Session, Plant and Animal Genome, San Diego, CA, USA\hfill2018
\item Plant Genome Evolution, Sitges, Spain\hfill2017
\item Purdue Plant Science Symposium (Student Organized), West Lafayette, IN, USA\hfill2017
\item P\textsuperscript{2}IRC Annual Symposium, Saskatoon, Saskatchewan, Canada\hfill2017
\item Maize Tools and Resources (Maize Genetics Conference pre-meeting), St. Louis, MO, USA\hfill2017
\item Phenome, Tucson, AZ, USA\hfill2017
\item Corn Breeding Research Meeting, Jacksonville, FL, USA\hfill2016
\item Molecular Plant Symposium: From Model Species to Crops, Shanghai, China\hfill2015
\item Corn Breeding Research Meeting, St. Charles, IL, USA\hfill2015
\item Life Technologies Session, Plant and Animal Genome, San Diego, CA, USA\hfill2015
\item Maize Session, Plant and Animal Genome, San Diego, CA, USA\hfill2015
\item Millet as Crop: Past and Future, Aohan, Inner Mongolia, China\hfill2014
\item Plant Genomes in China Meeting, Tai'an, China\hfill2012
\item American Society of Plant Biology, Austin, TX, USA\hfill2012
\item Polyploidy Session, Plant and Animal Genome, San Deigo, CA, USA\hfill2012
\item CSSA Translational Genomics Session, Plant and Animal Genome, San Diego, CA, USA\hfill2012
\end{itemize}
\subsection*{Internal}
\begin{itemize}
\item Complex Biosystems Seminar Series, UNL\hfill2021 \textit{(In Person, COVID)}
\item Agronomy \& Horticulture Departmental Seminar Series, UNL\hfill2020 \textit{(Remote, COVID)}
\item Nebraska Plant Science Symposium (Student Organized)\hfill2019
\item UNL Plant Phenomics Symposium\hfill2018
\item NeDA 2017: 2nd Nebraska Data Analytics Workshop, UNL\hfill2017
\item Water for Food Global Conference, UNL\hfill2017
%\item School of Biological Sciences Seminar Series, UNL\hfill2017
\item Complex Biosystems Seminar Series, UNL\hfill2017
\item Food Science Departmental Seminar Series, UNL\hfill2016
\item Animal Science Departmental Seminar Series, UNL\hfill2016
\item Agronomy \& Horticulture Departmental Seminar Series, UNL\hfill2015
\item Plant Science Retreat, UNL\hfill2014
\end{itemize}
\section*{Professional Memberships}
\begin{itemize}
\item American Society of Plant Biology
\item Crop Science Society of America
\item North American Plant Phenotyping Network
\item American Association for the Advancement of Science
\end{itemize}
\end{document}
% Footer