Skip to content
Snippets Groups Projects
Commit 5a55d95a authored by James Schnable's avatar James Schnable
Browse files

test

parent 646fc853
No related branches found
No related tags found
No related merge requests found
......@@ -268,13 +268,13 @@ Srinidhi Bashyam (co-advised, MS, Computer Science \& Engineering)
2 UCARE (Undergraduate Creative Activities and Research Experience) students;
and 9 undergraduate students supported by regular research funding.
\item \textbf{High School Researchers:}
1 student supported through the Young Nebraska Scientist program;
2 students supported through the Young Nebraska Scientist program;
1 supported by regular research funding.
\end{itemize}
\section*{Publications}
\begin{center}
\textbf{H-Index:} \textbf{\href{https://scholar.google.com/citations?user=cik4JVYAAAAJ}{32}} \\
\textbf{H-Index:} \textbf{\href{https://scholar.google.com/citations?user=cik4JVYAAAAJ}{33}} \\
Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$undergraduate author, $^\S$corresponding author
\end{center}
......@@ -283,32 +283,40 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\addtolength{\leftskip}{9mm}
\subsection*{Preprints}
\noindent Rodene E, Xu G, Delen SP, \textbf{Smith C}, Ge Y, \textbf{Schnable JC}, Yang J$^\S$ A UAV-based high-throughput phenotyping approach to assess time-series nitrogen responses and identify traits associated genetic components in maize. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.05.24.445447}{10.1101/2021.05.24.445447} \\
\noindent \textbf{Sun G}$^\S$, \textbf{Mural RV}, \textbf{Turkus JD}, \textbf{Schnable JC} Quantitative resistance loci to southern rust mapped in a temperate maize diversity panel. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.04.02.438220}{10.1101/2021.04.02.438220} \\
\noindent \textbf{Miao C}, \textbf{Guo A}$^\ddagger$, Yang J, Ge Y, \textbf{Schnable JC}$^\S$ Automation of leaf counting in maize and sorghum using deep learning. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.10.27.355495}{10.1101/2020.12.19.423626}\\
\noindent \textbf{Mural RV}, \textbf{Grzybowski M}, \textbf{Miao C}, \textbf{Damke A}$^\ddagger$, Sapkota S, Boyles RE, Salas Fernandez MG, Schnable PS, \textbf{Sigmon B}, Kresovich S, \textbf{Schnable JC}$^\S$ Meta-analysis identifies pleiotropic loci controlling phenotypic trade-offs in sorghum. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.10.27.355495}{10.1101/2020.10.27.355495}\\
\noindent \textbf{Miao C}, \textbf{Hoban TP}$^\ddagger$, \textbf{Pages A}$^\ddagger$, Xu Z, Rodene E, Ubbens J, Stavness I, Yang J, \textbf{Schnable JC}$^\S$ Simulated plant images improve maize leaf counting accuracy. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/706994}{10.1101/706994} \\
\noindent Zhang Z$^\S$, Chen C, Rutkoski J, \textbf{Schnable JC}, Murray S, Wang L, Jin X, Stich B, Crossa J, Hayes B. Harnessing Agronomics Through Genomics and Phenomics in Plant Breeding: A Review. \textsc{preprints.org} doi: \href{https://www.preprints.org/manuscript/202103.0519/v1}{10.20944/preprints202103.0519.v1}
\subsection*{Other Manuscripts in Review}
\noindent Wang M, Shilo S, Levy AA, Zelkowski M, Olson MA, Jiang J, \textbf{Schnable JC}, Sun Q, Pillardy J, Kianian PMA, Kianian SF, Chen C, Pawlowski WP$^\S$ Elucidating features and evolution of recombination sites in plants using machine learning. \textit{(In Review)} \\
%\noindent Wang M, Shilo S, Levy AA, Zelkowski M, Olson MA, Jiang J, \textbf{Schnable JC}, Sun Q, Pillardy J, Kianian PMA, Kianian SF, Chen C, Pawlowski WP$^\S$ Elucidating features and evolution of recombination sites in plants using machine learning. \textit{(In Review)} \\
\noindent Kusmec A, Yeh CT, AlKhalifa N ... \textbf{Schnable JC} (26th of 38 authors) ... Willis DM, Wisser RJ, Schnable PS$^\S$ Data-driven identification of environmental variables influencing phenotypic plasticity to facilitate breeding for future climates: a case study involving grain yield of hybrid maize. \textit{(In Review)}\\
\noindent Kusmec A, Yeh CT, AlKhalifa N ... \textbf{Schnable JC} (26th of 38 authors) ... Willis DM, Wisser RJ, Schnable PS$^\S$ Data-driven identification of environmental variables influencing phenotypic plasticity to facilitate breeding for future climates: a case study involving grain yield of hybrid maize. \textit{(In Review)}
\noindent Serba DD, \textbf{Meng X}, \textbf{Schnable JC}, Bashir E, Michaud JP, Prasad PVV, Perumal R$^\S$ Comparative transcriptome analysis reveals genetic mechanisms of sugarcane aphid resistance in grain sorghum. \textit{(In Review)} \\
\noindent \textbf{Sun G}, Wase N, Shu S, Jenkins J, Zhou B, Chen C, Sandor L, Plott C, Yoshinga Y, Daum C, Qi P, Barry K, Lipzen A, Berry L, Gottilla T, \textbf{Foltz A}, Yu H, O'Malley R, Zhang C, Devos KM, \textbf{Sigmon B}, Yu B, Obata T, Schmutz J$^\S$, \textbf{Schnable JC}$^\S$ Genome sequence of \textit{Paspalum vaginatum} indicates trehalose may act as a conserved trigger for increased nitrogen use efficiency in grasses. \textit{In Review} \\
\noindent Hurst JP, \textbf{Schnable JC}, Holding DR. Tandem duplicate expression patterns areconserved between maize haplotypes of the α-zeingene family. \textit{In Review}
\begin{etaremune}
\subsection*{Faculty Publications}
\item \textbf{Grzybowski M}, Wijewardane NK, Atefi A, Ge Y, \textbf{Schnable JC}$^S$ (2021) The potential of hyperspectral reflectance as a tool for quantitative genetics in crops. \textsc{Plant Communications} \textit{(Accepted)}
\item \textbf{Mural RV}, \textbf{Grzybowski M}, \textbf{Miao C}, \textbf{Damke A}$^\ddagger$, Sapkota S, Boyles RE, Salas Fernandez MG, Schnable PS, \textbf{Sigmon B}, Kresovich S, \textbf{Schnable JC}$^\S$ (2021) Meta-analysis identifies pleiotropic loci controlling phenotypic trade-offs in sorghum. \textsc{Genetics} doi: \href{https://doi.org/10.1093/genetics/iyab087}{10.1093/genetics/iyab087} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.10.27.355495}{10.1101/2020.10.27.355495}
\item \textbf{Grzybowski M}, Wijewardane NK, Atefi A, Ge Y, \textbf{Schnable JC}$^\S$ (2021) The potential of hyperspectral reflectance as a tool for quantitative genetics in crops. \textsc{Plant Communications} doi: \href{https://doi.org/10.1016/j.xplc.2021.100209}{10.1016/j.xplc.2021.100209}
\item Zhou Y, Kusmec A, Mirnezami SV, Srinivasan L, Jubery TZ, \textbf{Schnable JC}, Salas-Fernandez MG, Nettleton D, Ganapathysubramanian B, Schnable PS$^\S$ (2021) Identification and exploitation of genetic determinants of trait measurement errors in image-based, high-throughput phenotyping. \textsc{The Plant Cell} \textit{(Accepted)}
\item Zhou Y, Kusmec A, Mirnezami SV, Srinivasan L, Jubery TZ, \textbf{Schnable JC}, Salas-Fernandez MG, Nettleton D, Ganapathysubramanian B, Schnable PS$^\S$ (2021) Identification and utilization of genetic determinants of trait measurement errors in image-based, high-throughput phenotyping. \textsc{The Plant Cell} doi: \href{https://doi.org/10.1093/plcell/koab134}{10.1093/plcell/koab134}
\item Atefi A, Ge Y$^\S$, Pitla S, \textbf{Schnable JC} (2021) Robotic Technologies for High-Throughput Plant Phenotyping: Reviews and Perspectives. \textsc{Frontiers in Plant Science} \textit{(Accepted)}
\item Atefi A, Ge Y$^\S$, Pitla S, \textbf{Schnable JC} (2021) Robotic Technologies for High-Throughput Plant Phenotyping: Reviews and Perspectives. \textsc{Frontiers in Plant Science} doi: \href{https://www.frontiersin.org/articles/10.3389/fpls.2021.611940/}{10.3389/fpls.2021.611940} \textit{(Final Version In Press)}
\item Alzadjali A, Veeranampalayam-Sivakumar A, Alali MH, Deogun JS, Scott S, \textbf{Schnable JC}, Shi Y$^\S$ (2021) Maize tassel detection from UAV imagery using deep learning. \textsc{Frontiers in Robotics and AI} \textit{(Accepted)}
\item Alzadjali A, Veeranampalayam-Sivakumar A, Alali MH, Deogun JS, Scott S, \textbf{Schnable JC}, Shi Y$^\S$ (2021) Maize tassel detection from UAV imagery using deep learning. \textsc{Frontiers in Robotics and AI} \href{https://www.frontiersin.org/articles/10.3389/frobt.2021.600410/}{10.3389/frobt.2021.600410} \textit{(Final Version In Press)}
\item Meier MA, Lopenz-Guerrero MG, Guo M, Schmer MR, Herr JR, \textbf{Schnable JC}, Alfano JR, Yang J$^\S$ (2021) Rhizosphere microbiomes in a historical maize/soybean rotation system respond to host species and nitrogen fertilization at genus and sub-genus levels. \textsc{Applied and Environmental Microbiology} doi: \href{https://doi.org/10.1128/AEM.03132-20}{10.1128/AEM.03132-20} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.10.244384}{10.1101/2020.08.10.244384}
......@@ -538,7 +546,7 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\subsection*{Peer Reviewed Conference Papers}
\begin{etaremune}
\item Khan SH, Tope S, Dalpati R, Kim KH, Noh M, Bulbul A, \textbf{Mural RV}, Banerjee A, \textbf{Schnable JC}, Ji M, Mastrango C, Zang L, Kim H. (2020) Development of a gas sensor for green leaf volatile detection. \textsc{Transducers 2021} \textit{(Accepted)}
\item Khan SH, Tope S, Dalpati R, Kim KH, Noh M, Bulbul A, \textbf{Mural RV}, Banerjee A, \textbf{Schnable JC}, Ji M, Mastrango C, Zang L, Kim H. (2021) Development of a gas sensor for green leaf volatile detection. \textsc{Transducers 2021} \textit{(Accepted)}
\item Gaillard M, \textbf{Miao C}, \textbf{Schnable JC}, Benes B (2020) Sorghum Segmentation by Skeleton Extraction. \textsc{Computer Vision Problems in Plant Phenotyping (CVPPP 2020)} Glasgow, UK
\item Sankaran S, Zhang C, \textbf{Hurst JP}, Marzougui A, Sivakumar ANV, Li J, \textbf{Schnable JC}, Shi Y (2020) Investigating the potential of satellite imagery for high-throughput field phenotyping applications. \textsc{SPIE Defense + Commercial Sensing} California, USA doi: \href{https://doi.org/10.1117/12.2558729}{10.1117/12.2558729}
\item Al-Zadjali A, Shi Y, Scott S, Deogun JS, and \textbf{Schnable JC} (2020) Faster-R-CNN based deep learning for locating corn tassels in UAV imagery. \textsc{SPIE Defense + Commercial Sensing} California, USA doi: \href{https://doi.org/10.1117/12.2560596}{10.1117/12.2560596}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment