@@ -326,6 +326,8 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
...
@@ -326,6 +326,8 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\item Meier MA, Lopenz-Guerrero MG, Guo M, Schmer MR, Herr JR, \textbf{Schnable JC}, Alfano JR, Yang J$^\S$ (2021) Rhizosphere microbiomes in a historical maize/soybean rotation system respond to host species and nitrogen fertilization at genus and sub-genus levels. \textsc{Applied and Environmental Microbiology} doi: \href{https://doi.org/10.1128/AEM.03132-20}{10.1128/AEM.03132-20}\textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.10.244384}{10.1101/2020.08.10.244384}
\item Meier MA, Lopenz-Guerrero MG, Guo M, Schmer MR, Herr JR, \textbf{Schnable JC}, Alfano JR, Yang J$^\S$ (2021) Rhizosphere microbiomes in a historical maize/soybean rotation system respond to host species and nitrogen fertilization at genus and sub-genus levels. \textsc{Applied and Environmental Microbiology} doi: \href{https://doi.org/10.1128/AEM.03132-20}{10.1128/AEM.03132-20}\textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.10.244384}{10.1101/2020.08.10.244384}
\item Serb DD, \textbf{Meng X}, \textbf{Schnable JC}, Bashir E, Michaud JP, Vara Prasad PV, Perumal R (2021) Comparative transcriptome analysis reveals genetic mechanisms of sugarcane aphid resistance in grain sorghum. \textsc{International Journal of Molecular Sciences} doi: \href{https://doi.org/10.3390/ijms22137129}{10.3390/ijms22137129}
\item Busta L, Schmitz E, Kosma D, \textbf{Schnable JC}, Cahoon EB$^\S$ (2021) A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry. \textsc{Proceedings of the National Academy of Sciences of the United States of America} doi: \href{https://doi.org/10.1073/pnas.2022982118}{10.1073/pnas.2022982118}
\item Busta L, Schmitz E, Kosma D, \textbf{Schnable JC}, Cahoon EB$^\S$ (2021) A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry. \textsc{Proceedings of the National Academy of Sciences of the United States of America} doi: \href{https://doi.org/10.1073/pnas.2022982118}{10.1073/pnas.2022982118}
\item\textbf{Meng X}, \textbf{Liang Z}, \textbf{Dai X}, \textbf{Zhang Y}, Mahboub S, \textbf{Ngu DW}$^\ddagger$, Roston RL, \textbf{Schnable JC}$^\S$ (2021) Predicting transcriptional responses to cold stress across plant species. \textsc{Proceedings of the National Academy of Sciences of the United States of America}. doi: \href{https://doi.org/10.1073/pnas.2026330118}{10.1073/pnas.2026330118}\textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.25.266635}{10.1101/2020.08.25.266635}
\item\textbf{Meng X}, \textbf{Liang Z}, \textbf{Dai X}, \textbf{Zhang Y}, Mahboub S, \textbf{Ngu DW}$^\ddagger$, Roston RL, \textbf{Schnable JC}$^\S$ (2021) Predicting transcriptional responses to cold stress across plant species. \textsc{Proceedings of the National Academy of Sciences of the United States of America}. doi: \href{https://doi.org/10.1073/pnas.2026330118}{10.1073/pnas.2026330118}\textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.25.266635}{10.1101/2020.08.25.266635}