@@ -306,17 +306,18 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
...
@@ -306,17 +306,18 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\begin{etaremune}
\begin{etaremune}
\subsection*{Faculty Publications}
\subsection*{Faculty Publications}
\item\textbf{Meng X}, \textbf{Liang Z}, \textbf{Dai X}, \textbf{Zhang Y}, Mahboub S, \textbf{Ngu DW}$^\ddagger$, Roston RL, \textbf{Schnable JC}$^\S$ (2021) Predicting transcriptional responses to cold stress across plant species. \textsc{Proceedings of the National Academy of Sciences of the United States of America}. \textit{(Accepted)}\textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.25.266635}{10.1101/2020.08.25.266635}
\itemBusta L, Schmitz E, Kosma D, \textbf{Schnable JC}, Cahoon EB$^\S$ (2021) A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry. \textsc{Proceedings of the National Academy of Sciences of the United States of America} doi: \href{https://doi.org/10.1073/pnas.2022982118}{10.1073/pnas.2022982118}
\itemBusta L, Schmitz E, Kosma D, \textbf{Schnable JC}, Cahoon EB. A co-opted steroid synthesis gene, maintained in sorghum but not maize, seals leaves against water loss. \textsc{Proceedings of the National Academy of Sciences of the United States of America}. \textit{(Accepted)}
\item\textbf{Meng X}, \textbf{Liang Z}, \textbf{Dai X}, \textbf{Zhang Y}, Mahboub S, \textbf{Ngu DW}$^\ddagger$, Roston RL, \textbf{Schnable JC}$^\S$ (2021) Predicting transcriptional responses to cold stress across plant species. \textsc{Proceedings of the National Academy of Sciences of the United States of America}. doi: \href{https://doi.org/10.1073/pnas.2026330118}{10.1073/pnas.2026330118}\textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.25.266635}{10.1101/2020.08.25.266635}
\item Sankaran S$^\S$, Marzougui A, \textbf{Hurst JP}, Zhang C, \textbf{Schnable JC}, Shi Y (2021) Can high resolution satellite imagery be used in high-throughput field phenotyping? \textsc{Transactions of the ASABE}\textit{(Accepted)}
\item Sankaran S$^\S$, Marzougui A, \textbf{Hurst JP}, Zhang C, \textbf{Schnable JC}, Shi Y (2021) Can high resolution satellite imagery be used in high-throughput field phenotyping? \textsc{Transactions of the ASABE}doi: \href{https://elibrary.asabe.org/abstract.asp?aid=52080&t=3&redir=aid=52080&confalias=t2&redir=[volume=0&issue=0&conf=t&orgconf=]&redirType=toc_journals.asp&redirType=toc_journals.asp}{10.13031/trans.14197}
\item Zhu Y, Chen Y, Ali Md. A, Dong L, Wang X, Archontoulis SV, \textbf{Schnable JC}, Castellano MJ$^\S$ (2021) Continuous in situ soil nitrate sensors: a comparison with conventional measurements and the value of high temporal resolution measurements. \textsc{Soil Science Society of America Journal} doi: \href{https://doi.org/10.1002/saj2.20226}{10.1002/saj2.20226}
\item Zhu Y, Chen Y, Ali Md. A, Dong L, Wang X, Archontoulis SV, \textbf{Schnable JC}, Castellano MJ$^\S$ (2021) Continuous in situ soil nitrate sensors: a comparison with conventional measurements and the value of high temporal resolution measurements. \textsc{Soil Science Society of America Journal} doi: \href{https://doi.org/10.1002/saj2.20226}{10.1002/saj2.20226}
\item\textbf{Lai X}, Bendix C, \textbf{Zhang Y}, \textbf{Schnable JC}, Harmon FG$^\S$ (2021) 72-hour diurnal RNA-seq analysis of fully expanded third leaves from maize, sorghum, and foxtail millet at 3-hour resolution. \textsc{BMC Research Notes} doi: \href{https://doi.org/10.1186/s13104-020-05431-5}{10.1186/s13104-020-05431-5}
\item\textbf{Lai X}, Bendix C, \textbf{Zhang Y}, \textbf{Schnable JC}, Harmon FG$^\S$ (2021) 72-hour diurnal RNA-seq analysis of fully expanded third leaves from maize, sorghum, and foxtail millet at 3-hour resolution. \textsc{BMC Research Notes} doi: \href{https://doi.org/10.1186/s13104-020-05431-5}{10.1186/s13104-020-05431-5}
\item Rogers AR, Dunne JC, Romay C ... \textbf{Schnable JC} (24th of 39 authors) ... Kaeppler S, De Leon N, Holland JB$^\S$ (2021) The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. \textsc{G3:Genes|Genomes|Genetics} doi: \href{https://doi.org/10.1093/g3journal/jkaa050}{10.1093/g3journal/jkaa050}
\item Rogers AR, Dunne JC, Romay C ... \textbf{Schnable JC} (24th of 39 authors) ... Kaeppler S, De Leon N, Holland JB$^\S$ (2021) The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. \textsc{G3:Genes|Genomes|Genetics} doi: \href{https://doi.org/10.1093/g3journal/jkaa050}{10.1093/g3journal/jkaa050}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} February 2021
\item Jarquin D, de Leon N, Romay C ... \textbf{Schnable JC} (24th of 33 authors) ... Wisser RJ, Xu W, Lorenz A (2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the Genomes to Fields maize project. \textsc{Frontiers in Genetics} doi: \href{https://doi.org/10.3389/fgene.2020.592769}{10.3389/fgene.2020.592769}
\item Jarquin D, de Leon N, Romay C ... \textbf{Schnable JC} (24th of 33 authors) ... Wisser RJ, Xu W, Lorenz A (2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the Genomes to Fields maize project. \textsc{Frontiers in Genetics} doi: \href{https://doi.org/10.3389/fgene.2020.592769}{10.3389/fgene.2020.592769}
...
@@ -462,7 +463,7 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
...
@@ -462,7 +463,7 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\subsection*{Postdoctoral Publications}
\subsection*{Postdoctoral Publications}
\item Weissmann S, Huang P, Wiechert M, Furoyama K, Brutnell TP, Taniguchi M, \textbf{Schnable JC},$^\S$ Mockler TC$^\S$ (2021) DCT4 - a new member of the dicarboxylate transporter family in C\textsubscript{4} grasses. \textsc{Genome Biology and Evolution} doi: \href{https://doi.org/10.1093/gbe/evaa251}{10.1093/gbe/evaa251}\textsc{bioRxiv} doi: \href{https://doi.org/10.1101/762724}{10.1101/762724}
\item Weissmann S, Huang P, Wiechert M, Furoyama K, Brutnell TP, Taniguchi M, \textbf{Schnable JC},$^\S$ Mockler TC$^\S$ (2021) DCT4 - a new member of the dicarboxylate transporter family in C\textsubscript{4} grasses. \textsc{Genome Biology and Evolution} doi: \href{https://academic.oup.com/gbe/article/doi/10.1093/gbe/evaa251/6126432?guestAccessKey=1ceb8d04-4e02-4ff3-89b5-705479ae4e47}{10.1093/gbe/evaa251}\textsc{bioRxiv} doi: \href{https://doi.org/10.1101/762724}{10.1101/762724}
\item Nani TF, \textbf{Schnable JC}, Washburn JD, Albert P, Pereira WA, Sobrinho FS, Birchler JA, Techia VH$^\S$ (2018). Location of low copy genes in chromosomes of \textit{Brachiaria} spp. \textsc{Molecular Biology Reports} doi: \href{https://doi.org/10.1007/s11033-018-4144-5}{10.1007/s11033-018-4144-5}
\item Nani TF, \textbf{Schnable JC}, Washburn JD, Albert P, Pereira WA, Sobrinho FS, Birchler JA, Techia VH$^\S$ (2018). Location of low copy genes in chromosomes of \textit{Brachiaria} spp. \textsc{Molecular Biology Reports} doi: \href{https://doi.org/10.1007/s11033-018-4144-5}{10.1007/s11033-018-4144-5}