Skip to content
Snippets Groups Projects
Commit ab10722a authored by James Schnable's avatar James Schnable
Browse files

luke paper has doi

parent 915bf71b
No related branches found
No related tags found
No related merge requests found
...@@ -306,17 +306,18 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg ...@@ -306,17 +306,18 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\begin{etaremune} \begin{etaremune}
\subsection*{Faculty Publications} \subsection*{Faculty Publications}
\item \textbf{Meng X}, \textbf{Liang Z}, \textbf{Dai X}, \textbf{Zhang Y}, Mahboub S, \textbf{Ngu DW}$^\ddagger$, Roston RL, \textbf{Schnable JC}$^\S$ (2021) Predicting transcriptional responses to cold stress across plant species. \textsc{Proceedings of the National Academy of Sciences of the United States of America}. \textit{(Accepted)} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.25.266635}{10.1101/2020.08.25.266635} \item Busta L, Schmitz E, Kosma D, \textbf{Schnable JC}, Cahoon EB$^\S$ (2021) A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry. \textsc{Proceedings of the National Academy of Sciences of the United States of America} doi: \href{https://doi.org/10.1073/pnas.2022982118}{10.1073/pnas.2022982118}
\item Busta L, Schmitz E, Kosma D, \textbf{Schnable JC}, Cahoon EB. A co-opted steroid synthesis gene, maintained in sorghum but not maize, seals leaves against water loss. \textsc{Proceedings of the National Academy of Sciences of the United States of America}. \textit{(Accepted)} \item \textbf{Meng X}, \textbf{Liang Z}, \textbf{Dai X}, \textbf{Zhang Y}, Mahboub S, \textbf{Ngu DW}$^\ddagger$, Roston RL, \textbf{Schnable JC}$^\S$ (2021) Predicting transcriptional responses to cold stress across plant species. \textsc{Proceedings of the National Academy of Sciences of the United States of America}. doi: \href{https://doi.org/10.1073/pnas.2026330118}{10.1073/pnas.2026330118} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2020.08.25.266635}{10.1101/2020.08.25.266635}
\item Sankaran S$^\S$, Marzougui A, \textbf{Hurst JP}, Zhang C, \textbf{Schnable JC}, Shi Y (2021) Can high resolution satellite imagery be used in high-throughput field phenotyping? \textsc{Transactions of the ASABE} \textit{(Accepted)} \item Sankaran S$^\S$, Marzougui A, \textbf{Hurst JP}, Zhang C, \textbf{Schnable JC}, Shi Y (2021) Can high resolution satellite imagery be used in high-throughput field phenotyping? \textsc{Transactions of the ASABE} doi: \href{https://elibrary.asabe.org/abstract.asp?aid=52080&t=3&redir=aid=52080&confalias=t2&redir=[volume=0&issue=0&conf=t&orgconf=]&redirType=toc_journals.asp&redirType=toc_journals.asp}{10.13031/trans.14197}
\item Zhu Y, Chen Y, Ali Md. A, Dong L, Wang X, Archontoulis SV, \textbf{Schnable JC}, Castellano MJ$^\S$ (2021) Continuous in situ soil nitrate sensors: a comparison with conventional measurements and the value of high temporal resolution measurements. \textsc{Soil Science Society of America Journal} doi: \href{https://doi.org/10.1002/saj2.20226}{10.1002/saj2.20226} \item Zhu Y, Chen Y, Ali Md. A, Dong L, Wang X, Archontoulis SV, \textbf{Schnable JC}, Castellano MJ$^\S$ (2021) Continuous in situ soil nitrate sensors: a comparison with conventional measurements and the value of high temporal resolution measurements. \textsc{Soil Science Society of America Journal} doi: \href{https://doi.org/10.1002/saj2.20226}{10.1002/saj2.20226}
\item \textbf{Lai X}, Bendix C, \textbf{Zhang Y}, \textbf{Schnable JC}, Harmon FG$^\S$ (2021) 72-hour diurnal RNA-seq analysis of fully expanded third leaves from maize, sorghum, and foxtail millet at 3-hour resolution. \textsc{BMC Research Notes} doi: \href{https://doi.org/10.1186/s13104-020-05431-5}{10.1186/s13104-020-05431-5} \item \textbf{Lai X}, Bendix C, \textbf{Zhang Y}, \textbf{Schnable JC}, Harmon FG$^\S$ (2021) 72-hour diurnal RNA-seq analysis of fully expanded third leaves from maize, sorghum, and foxtail millet at 3-hour resolution. \textsc{BMC Research Notes} doi: \href{https://doi.org/10.1186/s13104-020-05431-5}{10.1186/s13104-020-05431-5}
\item Rogers AR, Dunne JC, Romay C ... \textbf{Schnable JC} (24th of 39 authors) ... Kaeppler S, De Leon N, Holland JB$^\S$ (2021) The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. \textsc{G3:Genes|Genomes|Genetics} doi: \href{https://doi.org/10.1093/g3journal/jkaa050}{10.1093/g3journal/jkaa050} \item Rogers AR, Dunne JC, Romay C ... \textbf{Schnable JC} (24th of 39 authors) ... Kaeppler S, De Leon N, Holland JB$^\S$ (2021) The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. \textsc{G3:Genes|Genomes|Genetics} doi: \href{https://doi.org/10.1093/g3journal/jkaa050}{10.1093/g3journal/jkaa050}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} February 2021
\item Jarquin D, de Leon N, Romay C ... \textbf{Schnable JC} (24th of 33 authors) ... Wisser RJ, Xu W, Lorenz A (2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the Genomes to Fields maize project. \textsc{Frontiers in Genetics} doi: \href{https://doi.org/10.3389/fgene.2020.592769}{10.3389/fgene.2020.592769} \item Jarquin D, de Leon N, Romay C ... \textbf{Schnable JC} (24th of 33 authors) ... Wisser RJ, Xu W, Lorenz A (2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the Genomes to Fields maize project. \textsc{Frontiers in Genetics} doi: \href{https://doi.org/10.3389/fgene.2020.592769}{10.3389/fgene.2020.592769}
...@@ -462,7 +463,7 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg ...@@ -462,7 +463,7 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\subsection*{Postdoctoral Publications} \subsection*{Postdoctoral Publications}
\item Weissmann S, Huang P, Wiechert M, Furoyama K, Brutnell TP, Taniguchi M, \textbf{Schnable JC},$^\S$ Mockler TC$^\S$ (2021) DCT4 - a new member of the dicarboxylate transporter family in C\textsubscript{4} grasses. \textsc{Genome Biology and Evolution} doi: \href{https://doi.org/10.1093/gbe/evaa251}{10.1093/gbe/evaa251} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/762724}{10.1101/762724} \item Weissmann S, Huang P, Wiechert M, Furoyama K, Brutnell TP, Taniguchi M, \textbf{Schnable JC},$^\S$ Mockler TC$^\S$ (2021) DCT4 - a new member of the dicarboxylate transporter family in C\textsubscript{4} grasses. \textsc{Genome Biology and Evolution} doi: \href{https://academic.oup.com/gbe/article/doi/10.1093/gbe/evaa251/6126432?guestAccessKey=1ceb8d04-4e02-4ff3-89b5-705479ae4e47}{10.1093/gbe/evaa251} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/762724}{10.1101/762724}
\item Nani TF, \textbf{Schnable JC}, Washburn JD, Albert P, Pereira WA, Sobrinho FS, Birchler JA, Techia VH$^\S$ (2018). Location of low copy genes in chromosomes of \textit{Brachiaria} spp. \textsc{Molecular Biology Reports} doi: \href{https://doi.org/10.1007/s11033-018-4144-5}{10.1007/s11033-018-4144-5} \item Nani TF, \textbf{Schnable JC}, Washburn JD, Albert P, Pereira WA, Sobrinho FS, Birchler JA, Techia VH$^\S$ (2018). Location of low copy genes in chromosomes of \textit{Brachiaria} spp. \textsc{Molecular Biology Reports} doi: \href{https://doi.org/10.1007/s11033-018-4144-5}{10.1007/s11033-018-4144-5}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment