Skip to content
Snippets Groups Projects
Commit ec4fcc44 authored by James Schnable's avatar James Schnable
Browse files

new papers

parent c471f7d2
No related branches found
No related tags found
No related merge requests found
......@@ -162,7 +162,7 @@ NSF PGRP Fellowship Supported Visiting Scholar \hfill 2013-2014
\section*{Research Support}
\begin{center}
\$25.6M in total federal funding as PI/co-PI 2015-Present\\
\$29.6M in total federal funding as PI/co-PI 2015-Present\\
\textit{(Excludes \$20M NSF Center for Root and Rhizobiome Innovation award (2016) and \$20M NSF AI Institute for Resilient Agriculture award (2021).)}
\end{center}
\subsection*{Federal (Current)}
......@@ -225,14 +225,16 @@ NSF PGRP Fellowship Supported Visiting Scholar \hfill 2013-2014
\subsection*{Entrepreneurship-Related Funding}
\begin{itemize}
%\item NSF (to EnGeniousAg) ``SBIR Phase II: Low-cost in-planta nitrate sensor'' 2023-2025 \$1M
\item NSF (to EnGeniousAg) ``SBIR Phase II: Low-cost in-planta nitrate sensor'' 2023-2025 \$1M
\item NSF (to EnGeniousAg) ``SBIR Phase I: Low-cost in-planta nitrate sensor'' 2019-2022 \$225k
\item USDA (to EnGeniousAg) ``SBIR Phase I: Low-cost field-deployable sensors to monitor nitrate in soil and water.'' 2019-2021 \$100k
\item Raised more than \$7M in private sector equity funding.
\end{itemize}
\subsection*{Industry Cooperation}
\begin{itemize}
\item Scientific Advisory Council, GeneSeek, Inc\hfill2017-Present
\item Advisor, DeepCropVision \textit{(UNL student lead-startup)}\hfill2022-Present
\item Advisory Board, Afflo Sensors\hfill2023-Present
\item External Advisor to the Scientific Advisory Board, Indigo Agriculture\hfill2017
\item External Advisor to the Scientific Advisory Board, Syngenta AG\hfill2016
......@@ -300,14 +302,14 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
%Figure out how to emphasis italics stuff more.
\addtolength{\leftskip}{9mm}
\subsection*{Preprints}
%\addtolength{\leftskip}{9mm}
%\subsection*{Preprints}
\noindent Kick D, Wallace J, \textbf{Schnable JC}, Kolkman JM, Alaca B, Beissinger TM, Ertl D, Flint-Garcia S, Gage JL, Hirsch CN, Knoll JE, de Leon N, Lima DC, Moreta D, Singh MP, Weldekidan T, Washburn JD$^\S$ Yield prediction through integration of genetic, environment, and management data through deep learning. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.07.29.502051}{10.1101/2022.07.29.502051}\\
%\noindent Kick D, Wallace J, \textbf{Schnable JC}, Kolkman JM, Alaca B, Beissinger TM, Ertl D, Flint-Garcia S, Gage JL, Hirsch CN, Knoll JE, de Leon N, Lima DC, Moreta D, Singh MP, Weldekidan T, Washburn JD$^\S$ Yield prediction through integration of genetic, environment, and management data through deep learning. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.07.29.502051}{10.1101/2022.07.29.502051}\\
\noindent Xu G, Lyu J, Obata T, Liu S, Ge Y, \textbf{Schnable JC}, Yang J$^\S$ A historically balanced locus under recent directional selection in responding to changed nitrogen conditions during modern maize breeding. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.02.09.479784}{10.1101/2022.02.09.479784}\\
%\noindent Xu G, Lyu J, Obata T, Liu S, Ge Y, \textbf{Schnable JC}, Yang J$^\S$ A historically balanced locus under recent directional selection in responding to changed nitrogen conditions during modern maize breeding. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.02.09.479784}{10.1101/2022.02.09.479784}\\
\noindent \textbf{Miao C}, \textbf{Hoban TP}$^\ddagger$, \textbf{Pages A}$^\ddagger$, Xu Z, Rodene E, Ubbens J, Stavness I, Yang J, \textbf{Schnable JC}$^\S$ Simulated plant images improve maize leaf counting accuracy. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/706994}{10.1101/706994} \\
%\noindent \textbf{Miao C}, \textbf{Hoban TP}$^\ddagger$, \textbf{Pages A}$^\ddagger$, Xu Z, Rodene E, Ubbens J, Stavness I, Yang J, \textbf{Schnable JC}$^\S$ Simulated plant images improve maize leaf counting accuracy. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/706994}{10.1101/706994} \\
%\noindent Zhang Z$^\S$, Chen C, Rutkoski J, \textbf{Schnable JC}, Murray S, Wang L, Jin X, Stich B, Crossa J, Hayes B. Harnessing Agronomics Through Genomics and Phenomics in Plant Breeding: A Review. \textsc{preprints.org} doi: \href{https://www.preprints.org/manuscript/202103.0519/v1}{10.20944/preprints202103.0519.v1}
......@@ -326,6 +328,14 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\begin{etaremune}
\subsection*{Faculty Publications}
\item Barnes AC, Myers JL, Surber SM, \textbf{Liang Z}, Mower JP, \textbf{Schnable JC}, Roston RL (2023) Oligogalactolipid production during cold challenge is conserved in early diverging lineages. \textsc{Journal of Experimental Botany} doi: \href{https://doi.org/10.1093/jxb/erad241}{10.1093/jxb/erad241}
\item Chen J, Wang Z, Tan K, Huang W, Shi J, Li T, Hu J, Wang K, Xin B, Zhao H, Song W, Hufford MB, \textbf{Schnable JC}, Ware DH, Jin W, Lai J$^\S$ (2023) A complete telomere-to-telomere assembly of the maize genome. \textsc{Nature Genetics} doi: \href{https://doi.org/10.1038/s41588-023-01419-6}{10.1038/s41588-023-01419-6}
\item Kick D, Wallace J, \textbf{Schnable JC}, Kolkman JM, Alaca B, Beissinger TM, Ertl D, Flint-Garcia S, Gage JL, Hirsch CN, Knoll JE, de Leon N, Lima DC, Moreta D, Singh MP, Weldekidan T, Washburn JD$^\S$ Yield prediction through integration of genetic, environment, and management data through deep learning. \textsc{G3} doi: \href{https://doi.org/10.1093/g3journal/jkad006}{10.1093/g3journal/jkad006} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.07.29.502051}{10.1101/2022.07.29.502051}
\item Lima DC$^\S$, Aviles AC, Alphers RT ... \textbf{Schnable JC} (26th of 37 authors) ... Wisser RJ, Xu W, de Leon N (2023) 2018–2019 field seasons of the Maize Genomes to Fields (G2F) G x E project. \textsc{BMC Genomic Data} doi: \href{https://doi.org/10.1186/s12863-023-01129-2}{10.1186/s12863-023-01129-2}
\item Sahay S$^*$, \textbf{Grzybowski M}$^*$, \textbf{Schnable JC}, Glowacka K$^\S$ (2023) Genetic control of photoprotection and photosystem II operating efficiency in plants. \textsc{New Phytologist} doi: \href{https://doi.org/10.1111/nph.18980}{10.1111/nph.18980}
\item Wijewardane NK, Zhang H, Yang J, \textbf{Schnable JC}, Schachtman DP, Ge Y$^\S$ (2023) A leaf-level spectral library to support high throughput plant phenotyping: Predictive accuracy and model transfer. \textsc{Journal of Experimental Botany} doi: \href{https://doi.org/10.1093/jxb/erad129}{10.1093/jxb/erad129}
......@@ -765,7 +775,8 @@ Science Advances
\emph{Invited presentations only. Excludes presentations selected based on abstracts or applications.}
\end{center}
\begin{itemize}
\item Corteva Symposium Series, North of Rio de Janeiro State University (Student Organized), Campos dos Goytacazes, Brazil\hfill2023
\item Sorghum in the 21st Century, Montpellier, France\hfill2023
\item Corteva Symposium Series, North of Rio de Janeiro State University (Student Organized), Campos dos Goytacazes, Brazil\hfill2023\textit{(Remote)}
\item Iowa Biotech Showcase, Ankeny, IA\hfill2023
\item SFBV (French Society of Plant Biology), Montpellier, France\hfill 2022
\item Plant Response to Stresses and Environmental Signals, Beijing, China\hfill 2022 \textit{(Remote)}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment