Skip to content
Snippets Groups Projects
Commit 06d8916b authored by Brady James Garvin's avatar Brady James Garvin
Browse files

Designed, traced, and coded other iterative graph searches.

parent 3f4515c6
No related branches found
No related tags found
No related merge requests found
...@@ -61,51 +61,74 @@ In the weighted directed graph on the whiteboard, what is the shortest path from ...@@ -61,51 +61,74 @@ In the weighted directed graph on the whiteboard, what is the shortest path from
## Breadth-First Search (BFS) ## Breadth-First Search (BFS)
* Worklist: * Worklist: Queue
* Guaranteed to find a path with the fewest edges * Guaranteed to find a path with the fewest edges
Worklist Backpointers Worklist Backpointers
-------- ------------ -------- ------------
(⊥, a) (⊥, a) ✓ a → (⊥, a)
(a, c) ✓ c → (a, c)
(c, e) ✓ e → (c, e)
(c, b) ✓ b → (c, b)
(e, d) ✓ d → (e, d)
(e, f)
(b, e)
(b, a)
Reversed Path Reversed Path
---- ----
d ← e ← c ← a
## Dijkstra's Algorithm ## Dijkstra's Algorithm
* Worklist: * Worklist: Priority Queue
* Priority: * Priority: Distance travelled from the source
* Guaranteed to find a path with least weight * Guaranteed to find a path with least weight
Worklist Backpointers Worklist Backpointers
------------ -------------- ------------ --------------
(⊥, a, 0) (⊥, a, 0) ✓ a → (⊥, a, 0)
(a, c, 7) ✓ c → (a, c, 7)
(c, e, 12) ✓ b → (c, b, 8)
(c, b, 8) ✓ e → (c, e, 12)
(b, e, 17) f → (e, f, 14)
(b, a, 12) ✓ d → (f, d, 14)
(e, d, 15)
(e, f, 14) ✓
(f, c, 22)
(f, d, 14) ✓
Reversed Path Reversed Path
---- ----
d ← f ← e ← c ← a
## Best-First Search ## Best-First Search
* Worklist: * Worklist: Priority Queue
* Priority: * Priority: Distance travelled from the source plus estimated distance still to travel
* Guaranteed to find a path if one exists * Guaranteed to find a path if one exists
* Not guaranteed to find a good path (but often does anyway) * Not guaranteed to find a good path (but often does anyway)
* Can have good best- and average-case time efficiency * Can have good best- and average-case time efficiency
Worklist Backpointers Worklist Backpointers
------------ -------------- ----------------- --------------
(⊥, a, 0) (⊥, a, 0) → 2 ✓ a → (⊥, a, 0)
(a, c, 7) → 9 ✓ c → (a, c, 7)
(c, e, 12) → 13 ✓ b → (c, b, 8)
(c, b, 8) → 9 ✓ e → (c, e, 12)
(b, a, 12) → 14 ✓ d → (e, d, 15)
(b, e, 17) → 18
(e, d, 15) → 15 ✓
(e, f, 14) → 16
Reversed Path Reversed Path
---- ----
d ← e ← c ← a
## A* ## A*
* Worklist: * Worklist: Priority Queue
* Priority: * Priority: Distance travelled from the source plus estimated distance still to travel (estimates computed with an *admissible* heuristic)
* Guaranteed to find a path with least weight * Guaranteed to find a path with least weight
* Can have good best- and average-case time efficiency * Can have good best- and average-case time efficiency
......
...@@ -37,19 +37,98 @@ export function dfs(graph, source, destination) { ...@@ -37,19 +37,98 @@ export function dfs(graph, source, destination) {
} }
export function bfs(graph, source, destination) { export function bfs(graph, source, destination) {
return undefined; // TODO: stub const backpointers = new Map();
const worklist = new Queue();
worklist.insert(new Edge(undefined, source));
while (worklist.size > 0) {
const workitem = worklist.remove();
if (backpointers.has(workitem.to)) {
continue;
}
backpointers.set(workitem.to, workitem);
if (workitem.to === destination) {
const reversedPath = [];
for (let current = destination;
current !== undefined;
current = backpointers.get(current).from) {
reversedPath.push(current);
}
return reversedPath.reverse();
}
for (const incidence of graph.getIncidences(workitem.to)) {
worklist.insert(new Edge(workitem.to, incidence.destination));
}
}
return undefined;
} }
export function dijkstras(graph, source, destination) { export function dijkstras(graph, source, destination) {
return undefined; // TODO: stub const backpointers = new Map();
const worklist = new PriorityQueue();
worklist.insert(new Edge(undefined, source, 0), 0);
while (worklist.size > 0) {
const workitem = worklist.remove();
if (backpointers.has(workitem.to)) {
continue;
}
backpointers.set(workitem.to, workitem);
if (workitem.to === destination) {
const reversedPath = [];
for (let current = destination;
current !== undefined;
current = backpointers.get(current).from) {
reversedPath.push(current);
}
return reversedPath.reverse();
}
for (const incidence of graph.getIncidences(workitem.to)) {
worklist.insert(
new Edge(workitem.to, incidence.destination, workitem.distance + incidence.weight),
workitem.distance + incidence.weight,
);
}
}
return undefined;
} }
function heuristic(vertex, destination) { function heuristic(vertex, destination) {
return 0; // TODO: stub if ('acf'.includes(vertex)) {
return 2;
}
if ('be'.includes(vertex)) {
return 1;
}
return 0;
} }
export function bestFirst(graph, source, destination) { export function bestFirst(graph, source, destination) {
return undefined; // TODO: stub const backpointers = new Map();
const worklist = new PriorityQueue();
worklist.insert(new Edge(undefined, source, 0), heuristic(source, destination));
while (worklist.size > 0) {
const workitem = worklist.remove();
if (backpointers.has(workitem.to) &&
backpointers.get(workitem.to).distance <= workitem.distance) {
continue;
}
backpointers.set(workitem.to, workitem);
if (workitem.to === destination) {
const reversedPath = [];
for (let current = destination;
current !== undefined;
current = backpointers.get(current).from) {
reversedPath.push(current);
}
return reversedPath.reverse();
}
for (const incidence of graph.getIncidences(workitem.to)) {
worklist.insert(
new Edge(workitem.to, incidence.destination, workitem.distance + incidence.weight),
workitem.distance + incidence.weight + heuristic(incidence.destination, destination),
);
}
}
return undefined;
} }
export function recursiveDFS(graph, source, destination) { export function recursiveDFS(graph, source, destination) {
......
...@@ -29,7 +29,7 @@ function formatSolution(solution) { ...@@ -29,7 +29,7 @@ function formatSolution(solution) {
} }
export function Solution(props) { export function Solution(props) {
const search = dfs; const search = bestFirst;
const firstSolution = search(firstExample, 'a', 'd'); const firstSolution = search(firstExample, 'a', 'd');
const secondSolution = search(secondExample, '123', '321'); const secondSolution = search(secondExample, '123', '321');
return ( return (
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment