Skip to content
Snippets Groups Projects
Commit 8b950a15 authored by James Schnable's avatar James Schnable
Browse files

general updates first 2024 papers

parent ea30eedd
Branches
Tags
No related merge requests found
...@@ -147,6 +147,7 @@ NSF PGRP Fellowship Supported Visiting Scholar \hfill 2013-2014 ...@@ -147,6 +147,7 @@ NSF PGRP Fellowship Supported Visiting Scholar \hfill 2013-2014
\section*{Selected Honors and Awards} \section*{Selected Honors and Awards}
\begin{itemize} \begin{itemize}
\item Outstanding Postdoc Mentor\hfill2024\\University of Nebraska-Lincoln
\item Fellow\hfill2023\\Nebraska Center for Entrepreneurship \item Fellow\hfill2023\\Nebraska Center for Entrepreneurship
\item Fellow\hfill2022\\PhenoRob \item Fellow\hfill2022\\PhenoRob
\item Outstanding Paper of the Year\hfill2020\\The Plant Phenome Journal \item Outstanding Paper of the Year\hfill2020\\The Plant Phenome Journal
...@@ -169,6 +170,7 @@ NSF PGRP Fellowship Supported Visiting Scholar \hfill 2013-2014 ...@@ -169,6 +170,7 @@ NSF PGRP Fellowship Supported Visiting Scholar \hfill 2013-2014
\subsection*{Federal (Current)} \subsection*{Federal (Current)}
\begin{itemize} \begin{itemize}
\item NSF ``RESEARCH-PGR: Cycling to low-temperature tolerance.'' (co-PI) 2024-2027 \$1.8M
\item USDA-NIFA ``Improving Causal Gene Detection across Crop and Livestock Species.'' (co-PI) 2023-2026. \$1.3M \item USDA-NIFA ``Improving Causal Gene Detection across Crop and Livestock Species.'' (co-PI) 2023-2026. \$1.3M
\item DOE ``Phenotypic and Molecular Characterization of Nitrogen Responsive Genes in Sorghum.'' (co-PI) 2022-2025. \$2.7M \item DOE ``Phenotypic and Molecular Characterization of Nitrogen Responsive Genes in Sorghum.'' (co-PI) 2022-2025. \$2.7M
\item DOE ``\href{https://news.unl.edu/newsrooms/today/article/nebraska-team-merges-machine-learning-plant-genetics-to-maximize-sorghum/}{TGCM: (T)rait, (G)ene, and (C)rop Growth (M)odel directed targeted gene characterization in sorghum}.'' (PI) 2019-2024. \$2.7M \item DOE ``\href{https://news.unl.edu/newsrooms/today/article/nebraska-team-merges-machine-learning-plant-genetics-to-maximize-sorghum/}{TGCM: (T)rait, (G)ene, and (C)rop Growth (M)odel directed targeted gene characterization in sorghum}.'' (PI) 2019-2024. \$2.7M
...@@ -242,8 +244,22 @@ NSF PGRP Fellowship Supported Visiting Scholar \hfill 2013-2014 ...@@ -242,8 +244,22 @@ NSF PGRP Fellowship Supported Visiting Scholar \hfill 2013-2014
\item External Advisor to the Scientific Advisory Board, Syngenta AG\hfill2016 \item External Advisor to the Scientific Advisory Board, Syngenta AG\hfill2016
\end{itemize} \end{itemize}
\section*{Advising} \section*{Mentoring}
\begin{itemize} \begin{itemize}
\item \textbf{Current Postdoctoral Mentees:}
Vladimir Torres-Rodriguez
\item \textbf{Former Postdoctoral Mentees:}
Ravi Mural (Assistant Professor, SDSU),
Marcin Grzybowski (Assistant Professor, University of Warsaw),
Deniz Istipliler (Assistant Professor, Ege University),
Guangchao Sun (Professor, Sichuan Agricultural University),
Xiaoxi “Peggy” Meng (Bioinformatics Scientist, St. Jude Children's Hospital),
Ranjita Thapa (Computatational Biologist, Inari),
Sunil KK Raju (Postdoctoral Scholar, NYU),
Lang Yan (Professor, XiChang College),
Yang Zhang (Bioinformatics Scientist, St. Jude Children’s Research Hospital)
\item \textbf{Current Graduate Advisees:} \item \textbf{Current Graduate Advisees:}
Michael Tross (PhD, Complex Biosystems, UNL Life Sciences Fellow), Michael Tross (PhD, Complex Biosystems, UNL Life Sciences Fellow),
Nikee Shrestha (PhD, Complex Biosystems, FFAR Career Development Fellow), Nikee Shrestha (PhD, Complex Biosystems, FFAR Career Development Fellow),
...@@ -301,7 +317,7 @@ Srinidhi Bashyam (co-advised, MS, Computer Science \& Engineering) ...@@ -301,7 +317,7 @@ Srinidhi Bashyam (co-advised, MS, Computer Science \& Engineering)
\section*{Publications} \section*{Publications}
\begin{center} \begin{center}
\textbf{H-Index:} \textbf{\href{https://scholar.google.com/citations?user=cik4JVYAAAAJ}{45}} \\ \textbf{H-Index:} \textbf{\href{https://scholar.google.com/citations?user=cik4JVYAAAAJ}{48}} \\
Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$undergraduate author, $^\S$corresponding author Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$undergraduate author, $^\S$corresponding author
\end{center} \end{center}
...@@ -310,10 +326,10 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg ...@@ -310,10 +326,10 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\addtolength{\leftskip}{9mm} \addtolength{\leftskip}{9mm}
\subsection*{Preprints} \subsection*{Preprints}
\noindent \textbf{Torres-Rodriguez JV}, Li D, \textbf{Turkus J}, Newton L, \textbf{Davis J}, \textbf{Lopez-Corona L}, \textbf{Ali W}, \textbf{Sun G}, \textbf{Mural RV}, \textbf{Grzybowski M}, Thompson AM, \textbf{Schnable JC}$^\S$ Population level gene expression can repeatedly link genes to functions in maize. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2023.10.31.565032}{10.1101/2023.10.31.565032}\\
\noindent Sahay S, \textbf{Shrestha N}, \textbf{Moura Dias H}, \textbf{Mural RV}, \textbf{Grzybowski M}, \textbf{Schnable JC}$^\S$, Glowacka K$^\S$ Comparative GWAS identifies a role for Mendel’s green pea gene in the nonphotochemical quenching kinetics of sorghum, maize, and arabidopsis. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2023.08.29.555201}{10.1101/2023.08.29.555201}\\ \noindent Sahay S, \textbf{Shrestha N}, \textbf{Moura Dias H}, \textbf{Mural RV}, \textbf{Grzybowski M}, \textbf{Schnable JC}$^\S$, Glowacka K$^\S$ Comparative GWAS identifies a role for Mendel’s green pea gene in the nonphotochemical quenching kinetics of sorghum, maize, and arabidopsis. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2023.08.29.555201}{10.1101/2023.08.29.555201}\\
\noindent Wang X, Hatasaka B, Liu Z, Tope S, Mohit K, Noh S, Sium F, \textbf{Mural RV}, Kim H, Mastrangelo C, Zang L, \textbf{Schnable JC}, Ji M. SPARC-LoRa: A scalable, power-efficient, affordable, reliable, and cloud service-enabled LoRa networking system for agriculture applications. \textsc{arXiv} doi: \href{https://doi.org/10.48550/arXiv.2401.13569}{10.48550/arXiv.2401.13569}\\
\noindent Engelhorn J, Snodgrass S, Kok A, Seetharam A, Schneider M, Kiwit T, Singh A, Banf M, Khaipho-Burch M, Runcie D, Camargo V, \textbf{Torres-Rodriguez JV}, \textbf{Sun G}, Stam M, Fiorani F, \textbf{Schnable JC}, Bass H, Hufford M, Stich B, Frommer W, Ross-Ibarra J, Hartwig T$^\S$ Phenotypic variation in maize can be largely explained by genetic variation at transcription factor binding sites. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2023.08.08.551183}{10.1101/2023.08.08.551183}\\ \noindent Engelhorn J, Snodgrass S, Kok A, Seetharam A, Schneider M, Kiwit T, Singh A, Banf M, Khaipho-Burch M, Runcie D, Camargo V, \textbf{Torres-Rodriguez JV}, \textbf{Sun G}, Stam M, Fiorani F, \textbf{Schnable JC}, Bass H, Hufford M, Stich B, Frommer W, Ross-Ibarra J, Hartwig T$^\S$ Phenotypic variation in maize can be largely explained by genetic variation at transcription factor binding sites. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2023.08.08.551183}{10.1101/2023.08.08.551183}\\
\noindent Li D, Wang Q, Tian Y, Lyu X, Zhang H, Sun Y, Hong H, Gao H, Li Y, Zhao C, Wang J, Wang R, Yang J, Liu B, Schnable PS, \textbf{Schnable JC}$^\S$, Li Y$^\S$, Qiu L$^\S$ Transcriptome brings variations of gene expression, alternative splicing, and structural variations into gene-scale trait dissection in soybean. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2023.07.03.545230}{10.1101/2023.07.03.545230} \noindent Li D, Wang Q, Tian Y, Lyu X, Zhang H, Sun Y, Hong H, Gao H, Li Y, Zhao C, Wang J, Wang R, Yang J, Liu B, Schnable PS, \textbf{Schnable JC}$^\S$, Li Y$^\S$, Qiu L$^\S$ Transcriptome brings variations of gene expression, alternative splicing, and structural variations into gene-scale trait dissection in soybean. \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2023.07.03.545230}{10.1101/2023.07.03.545230}
...@@ -339,6 +355,30 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg ...@@ -339,6 +355,30 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\begin{etaremune} \begin{etaremune}
\subsection*{Faculty Publications} \subsection*{Faculty Publications}
\item \textbf{Tross MC}, \textbf{Grzybowski M}, Jubery TZ, \textbf{Grove RJ}$^\ddagger$, \textbf{Nishimwe AV}$^\ddagger$, \textbf{Torres-Rodriguez JV}, \textbf{Sun G}, Ganapathysubramanian B, Ge Y, \textbf{Schnable JC}$^\S$ (2024) Data driven discovery and quantification of hyperspectral leaf reflectance phenotypes across a maize diversity panel. \textsc{The Plant Phenome Journal} \textit{(Accepted)} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2023.12.15.571950}{10.1101/2023.12.15.571950}
\item \textbf{Torres-Rodriguez JV}, Li D, \textbf{Turkus J}, Newton L, \textbf{Davis J}, \textbf{Lopez-Corona L}, \textbf{Ali W}, \textbf{Sun G}, \textbf{Mural RV}, \textbf{Grzybowski M}, Zamft B, Thompson AM, \textbf{Schnable JC}$^\S$ (2024) Population level gene expression can repeatedly link genes to functions in maize. \textsc{The Plant Journal} \textit{Accepted} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2023.10.31.565032}{10.1101/2023.10.31.565032}
\item \textbf{Jin H}, \textbf{Tross MC}, Tan R, Newton L, \textbf{Mural RV}, Yang J, Thompson AM, \textbf{Schnable JC}$^\S$ (2024) Imitating the ``breeder's eye'': predicting grain yield from measurements of non-yield traits. \textsc{The Plant Phenome Journal} doi: \href{10.1002/ppj2.20102}{10.1002/ppj2.20102}
\item Sahay S, \textbf{Grzybowski M}, \textbf{Schnable JC}, Glowacka K$^\S$ (2024) Genotype-specific nonphotochemical quenching responses to nitrogen deficit are linked to chlorophyll a to b ratios. \textsc{Journal of Plant Physiology} doi: \href{https://doi.org/10.1016/j.jplph.2024.154261}{10.1016/j.jplph.2024.154261}
\item Zarei A$^\S$, Li B, \textbf{Schnable JC}, Lyons E, Pauli D, Benes B, Barnard K (2024) PlantSegNet: 3D point cloud instance segmentation of nearby plant organs with identical semantics. \textsc{Computers and Electronics in Agriculture} doi: \href{https://doi.org/10.1016/j.compag.2024.108922}{10.1016/j.compag.2024.108922}
\item Rodene E, Fernando GD, Piyush V, Ge Y, \textbf{Schnable JC}, Ghosh S, Yang J$^\S$ (2024) Image filtering to improve maize tassel detection accuracy using machine learning algorithms. \textsc{Sensors} doi: \href{https://doi.org/10.3390/s24072172}{10.3390/s24072172}
\item \textbf{Sun G}, Yu H, Wang P, Lopez-Guerrero MG, \textbf{Mural RV}, \textbf{Mizero ON}$^\ddagger$, \textbf{Grzybowski M}, Song B, van Dijk K, Schachtman DP, Zhang C, \textbf{Schnable JC}$^\S$ (2023) A role for heritable transcriptomic variation in maize adaptation to temperate environments. \textsc{Genome Biology} doi: \href{https://doi.org/10.1186/s13059-023-02891-3}{10.1186/s13059-023-02891-3}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} August 2023
\item \textbf{Grzybowski M}$^\S$, \textbf{Mural RV}, Xu G, \textbf{Turkus, J}, Yang Jinliang, \textbf{Schnable JC} (2023) A common resequencing-based genetic marker dataset for global maize diversity. \textsc{The Plant Journal} doi: \href{https://doi.org/10.1111/tpj.16123}{10.1111/tpj.16123}\\
\textbf{\textit{Cover Article, March 2023}} \textbf{\textit{"Research Highlight"}} doi: \href{https://doi.org/10.1111/tpj.16123}{10.1111/tpj.16123}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} December 2023
\item Sahay S$^*$, \textbf{Grzybowski M}$^*$, \textbf{Schnable JC}, Glowacka K$^\S$ (2023) Genetic control of photoprotection and photosystem II operating efficiency in plants. \textsc{New Phytologist} doi: \href{https://doi.org/10.1111/nph.18980}{10.1111/nph.18980}
\item \textbf{Sun G}, Wase N, Shu S, Jenkins J, Zhou B, Chen C, Sandor L, Plott C, Yoshinga Y, Daum C, Qi P, Barry K, Lipzen A, Berry L, Gottilla T, \textbf{Foltz A}$^\ddagger$, Yu H, O'Malley R, Zhang C, Devos KM, \textbf{Sigmon B}, Yu B, Obata T, Schmutz J$^\S$, \textbf{Schnable JC}$^\S$ (2023) Genome of \textit{Paspalum vaginatum} and the role of trehalose mediated autophagy in increasing maize biomass. \textsc{Nature Communications} doi: \href{https://doi.org/10.1038/s41467-022-35507-8}{10.1038/s41467-022-35507-8} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.08.18.456832}{10.1101/2021.08.18.456832}\\
\textbf{\textit{"Research Highlight" in Nature Plants}} doi: \href{https://doi.org/10.1038/s41477-023-01343-x}{10.1038/s41477-023-01343-x}
\item DiMario R, Kophs A, Apalla A, \textbf{Schnable JS}, Cousins A$^\S$ (2023) Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C\textsubscript{4} grasses. \textsc{Annals Of Botany} doi: \href{https://doi.org/10.1093/aob/mcad116}{10.1093/aob/mcad116} \item DiMario R, Kophs A, Apalla A, \textbf{Schnable JS}, Cousins A$^\S$ (2023) Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C\textsubscript{4} grasses. \textsc{Annals Of Botany} doi: \href{https://doi.org/10.1093/aob/mcad116}{10.1093/aob/mcad116}
\item Barnes AC, Myers JL, Surber SM, \textbf{Liang Z}, Mower JP, \textbf{Schnable JC}, Roston RL$^\S$ (2023) Oligogalactolipid production during cold challenge is conserved in early diverging lineages. \textsc{Journal of Experimental Botany} doi: \href{https://doi.org/10.1093/jxb/erad241}{10.1093/jxb/erad241} \item Barnes AC, Myers JL, Surber SM, \textbf{Liang Z}, Mower JP, \textbf{Schnable JC}, Roston RL$^\S$ (2023) Oligogalactolipid production during cold challenge is conserved in early diverging lineages. \textsc{Journal of Experimental Botany} doi: \href{https://doi.org/10.1093/jxb/erad241}{10.1093/jxb/erad241}
...@@ -350,23 +390,12 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg ...@@ -350,23 +390,12 @@ Lab members in \textbf{bold}, $^*$authors contributed equally, $^\ddagger$underg
\item Lima DC$^\S$, Aviles AC, Alphers RT ... \textbf{Schnable JC} (26th of 37 authors) ... Wisser RJ, Xu W, de Leon N (2023) 2018–2019 field seasons of the Maize Genomes to Fields (G2F) G x E project. \textsc{BMC Genomic Data} doi: \href{https://doi.org/10.1186/s12863-023-01129-2}{10.1186/s12863-023-01129-2} \item Lima DC$^\S$, Aviles AC, Alphers RT ... \textbf{Schnable JC} (26th of 37 authors) ... Wisser RJ, Xu W, de Leon N (2023) 2018–2019 field seasons of the Maize Genomes to Fields (G2F) G x E project. \textsc{BMC Genomic Data} doi: \href{https://doi.org/10.1186/s12863-023-01129-2}{10.1186/s12863-023-01129-2}
\item Sahay S$^*$, \textbf{Grzybowski M}$^*$, \textbf{Schnable JC}, Glowacka K$^\S$ (2023) Genetic control of photoprotection and photosystem II operating efficiency in plants. \textsc{New Phytologist} doi: \href{https://doi.org/10.1111/nph.18980}{10.1111/nph.18980}
\item Wijewardane NK, Zhang H, Yang J, \textbf{Schnable JC}, Schachtman DP, Ge Y$^\S$ (2023) A leaf-level spectral library to support high throughput plant phenotyping: Predictive accuracy and model transfer. \textsc{Journal of Experimental Botany} doi: \href{https://doi.org/10.1093/jxb/erad129}{10.1093/jxb/erad129} \item Wijewardane NK, Zhang H, Yang J, \textbf{Schnable JC}, Schachtman DP, Ge Y$^\S$ (2023) A leaf-level spectral library to support high throughput plant phenotyping: Predictive accuracy and model transfer. \textsc{Journal of Experimental Botany} doi: \href{https://doi.org/10.1093/jxb/erad129}{10.1093/jxb/erad129}
\item \textbf{Sun G}, Yu H, Wang P, Lopez-Guerrero MG, \textbf{Mural RV}, \textbf{Mizero ON}$^\ddagger$, \textbf{Grzybowski M}, Song B, van Dijk K, Schachtman DP, Zhang C, \textbf{Schnable JC}$^\S$ (2023) A role for heritable transcriptomic variation in maize adaptation to temperate environments. \textsc{Genome Biology} doi: \href{https://doi.org/10.1186/s13059-023-02891-3}{10.1186/s13059-023-02891-3}\\
\textbf{\textit{ Selected as an Editor's Choice by MaizeGDB Editorial Board}} August 2023
\item Lima DC, Aviles AC, Alpers RT … \textbf{Schnable JC} (24th of 35 authors) … Weldekidan T, Xu W, de Leon N$^\S$ (2023) 2020-2021 field seasons of Maize GxE project within the Genomes to Fields Initiative. \textsc{BMC Research Notes} doi: \href{https://doi.org/10.1186/s13104-023-06430-y}{10.1186/s13104-023-06430-y} \item Lima DC, Aviles AC, Alpers RT … \textbf{Schnable JC} (24th of 35 authors) … Weldekidan T, Xu W, de Leon N$^\S$ (2023) 2020-2021 field seasons of Maize GxE project within the Genomes to Fields Initiative. \textsc{BMC Research Notes} doi: \href{https://doi.org/10.1186/s13104-023-06430-y}{10.1186/s13104-023-06430-y}
\item Gaillard M, Benes B, \textbf{Tross MC}, \textbf{Schnable JC} (2023) Multi-view triangulation without correspondences. \textsc{Computers and Electronics in Agriculture} doi: \href{https://doi.org/10.1016/j.compag.2023.107688}{10.1016/j.compag.2023.107688} \item Gaillard M, Benes B, \textbf{Tross MC}, \textbf{Schnable JC} (2023) Multi-view triangulation without correspondences. \textsc{Computers and Electronics in Agriculture} doi: \href{https://doi.org/10.1016/j.compag.2023.107688}{10.1016/j.compag.2023.107688}
\item \textbf{Grzybowski M}$^\S$, \textbf{Mural RV}, Xu G, \textbf{Turkus, J}, Yang Jinliang, \textbf{Schnable JC} (2023) A common resequencing-based genetic marker dataset for global maize diversity. \textsc{The Plant Journal} doi: \href{https://doi.org/10.1111/tpj.16123}{10.1111/tpj.16123}\\
\textbf{\textit{Cover Article, March 2023}} \textbf{\textit{"Research Highlight"}} doi: \href{https://doi.org/10.1111/tpj.16123}{10.1111/tpj.16123}
\item \textbf{Sun G}, Wase N, Shu S, Jenkins J, Zhou B, Chen C, Sandor L, Plott C, Yoshinga Y, Daum C, Qi P, Barry K, Lipzen A, Berry L, Gottilla T, \textbf{Foltz A}$^\ddagger$, Yu H, O'Malley R, Zhang C, Devos KM, \textbf{Sigmon B}, Yu B, Obata T, Schmutz J$^\S$, \textbf{Schnable JC}$^\S$ (2023) Genome of \textit{Paspalum vaginatum} and the role of trehalose mediated autophagy in increasing maize biomass. \textsc{Nature Communications} doi: \href{https://doi.org/10.1038/s41467-022-35507-8}{10.1038/s41467-022-35507-8} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2021.08.18.456832}{10.1101/2021.08.18.456832}\\
\textbf{\textit{"Research Highlight" in Nature Plants}} doi: \href{https://doi.org/10.1038/s41477-023-01343-x}{10.1038/s41477-023-01343-x}
\item \textbf{Grzybowski M}$^\S$, \textbf{Zweiner M}, \textbf{Jin H}, Wijewardane NK, Atefi A, Naldrett MJ, Alverez S, Ge Y, \textbf{Schnable JC} (2022) Variation in morpho-physiological and metabolic responses to low nitrogen stress across the sorghum association panel. \textsc{BMC Plant Biology} doi: \href{https://doi.org/10.1186/s12870-022-03823-2}{10.1186/s12870-022-03823-2} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.06.08.495271}{10.1101/2022.06.08.495271} \item \textbf{Grzybowski M}$^\S$, \textbf{Zweiner M}, \textbf{Jin H}, Wijewardane NK, Atefi A, Naldrett MJ, Alverez S, Ge Y, \textbf{Schnable JC} (2022) Variation in morpho-physiological and metabolic responses to low nitrogen stress across the sorghum association panel. \textsc{BMC Plant Biology} doi: \href{https://doi.org/10.1186/s12870-022-03823-2}{10.1186/s12870-022-03823-2} \textsc{bioRxiv} doi: \href{https://doi.org/10.1101/2022.06.08.495271}{10.1101/2022.06.08.495271}
\item Yang Q, Van Haute M, \textbf{Korth N}, Sattler S, Toy J, Rose D, \textbf{Schnable JC}, Benson A (2022) Genetic analysis of seed traits in Sorghum bicolor that affect the human gut microbiome. \textsc{Nature Communications} doi: \href{https://doi.org/10.1038/s41467-022-33419-1}{10.1038/s41467-022-33419-1}\\ \item Yang Q, Van Haute M, \textbf{Korth N}, Sattler S, Toy J, Rose D, \textbf{Schnable JC}, Benson A (2022) Genetic analysis of seed traits in Sorghum bicolor that affect the human gut microbiome. \textsc{Nature Communications} doi: \href{https://doi.org/10.1038/s41467-022-33419-1}{10.1038/s41467-022-33419-1}\\
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment